Answer:
Explanation:
Given that,
First Capacitor is 10 µF
C_1 = 10 µF
Potential difference is
V_1 = 10 V.
The charge on the plate is
q_1 = C_1 × V_1 = 10 × 10^-6 × 10 = 100µC
q_1 = 100 µC
A second capacitor is 5 µF
C_2 = 5 µF
Potential difference is
V_2 = 5V.
Then, the charge on the capacitor 2 is.
q_2 = C_2 × V_2
q_2 = 5µF × 5 = 25 µC
Then, the average capacitance is
q = (q_1 + q_2) / 2
q = (25 + 100) / 2
q = 62.5µC
B. The two capacitor are connected together, then the equivalent capacitance is
Ceq = C_1 + C_2.
Ceq = 10 µF + 5 µF.
Ceq = 15 µF.
The average voltage is
V = (V_1 + V_2) / 2
V = (10 + 5)/2
V = 15 / 2 = 7.5V
Energy dissipated is
U = ½Ceq•V²
U = ½ × 15 × 10^-6 × 7.5²
U = 4.22 × 10^-4 J
U = 422 × 10^-6
U = 422 µJ
Answer: Foods that naturally are nutrient-rich include fruits and vegetables. Lean meats, fish, whole grains, dairy, legumes, nuts, and seeds also are high in nutrients.
Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Answer:
malabo Hindi makita i don't know what the answer