Answer:
The velocity will be v = 22.1[m/s]
Explanation:
We can solve this problem by using the principle of energy conservation, where potential energy is converted to kinetic energy. For this problem we will take the point with maximum potential energy when the body is 25 [m] high. By the time the height is zero, the potential energy will have been transformed into kinetic energy, and we can find the velocity of the body.
![Ep = m*g*h\\where:\\m = mass = 88.2[kg]\\h = elevation = 25[m]\\g = gravity = 9.81 [m/s^2]\\Ep = 88.2*25*9.81 = 21631.05[J]\\](https://tex.z-dn.net/?f=Ep%20%3D%20m%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2088.2%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%2025%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5CEp%20%3D%2088.2%2A25%2A9.81%20%3D%2021631.05%5BJ%5D%5C%5C)
Now we know that the energy will be transformed.
![Ek=Ep\\Ek=0.5*m*v^{2} \\where:\\v=velocity [m/s]\\v=\sqrt{\frac{Ek}{0.5*m} } \\v=\sqrt{\frac{21631.05}{0.5*88.2} } \\v=22.14[m/s]](https://tex.z-dn.net/?f=Ek%3DEp%5C%5CEk%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7BEk%7D%7B0.5%2Am%7D%20%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B21631.05%7D%7B0.5%2A88.2%7D%20%7D%20%5C%5Cv%3D22.14%5Bm%2Fs%5D)
The force that keeps the puck moving is 0.25 N while the velocity of the puck is 3.7 m/s.
<h3>What is the centripetal force?</h3>
We know that the centripetal force is the force that acts on a body that is moving along a circular path. In this case, we are told that the puck is moving along a circular path hence it is acted upon by the centripetal force that acts on it.
The centripetal force in this case would be supplied by the weight of the object that is moving in the circular path. Thus we can write in our equation that;
Centripetal force = Weight of object = mg
m = mass of the object
g = acceleration due to gravity
Then;
W = 0.026 Kg * 9.8 m/s^2
W = 0.25 N
To obtain the velocity of the object;
FT = mv^2/r
v = √ FT r/m
v = √0.25 * 1.4/0.026
v = 3.7 m/s
Learn more about centripetal force:brainly.com/question/11324711
#SPJ1
Answer:
a)
= 692 N
b)
= 932 N
Explanation:
a)
According to newton's second law of motion, acceleration of an object is directly proportional to the net force acting on it. When there is no net force force acting on the body, there is no acceleration. A force is a push or a pull, and the net force ΣF is the total force, or sum of the forces exerted on an object in all directions.
∝ a
= ma
= ma
Given data:
= 800 N
Mass = m = 90 kg
acceleration = a = 1.2 m/s²
= ?
800 -
= (90)(1.2)
= 692 N
b)
According to newton's second law of motion,
∝ a
= ma
= ma
Given data:
If we assume the same friction and acceleration between player's feet and ground as calculated in part a
= 692 N
acceleration = a = 1.2 m/s²
We take the equal mass to the total mass of both the players because when the winning player push losing player backward, he exert force on the ground not only due to his mass but also due to the mass of losing player.
Mass = M = m₁ + m₂ = 110 kg + 90 kg
= 200 kg
= ?
- 692 N = (200)(1.2)
= 692 + 240
= 932 N
Hello!
A force of 5 N produces an acceleration of 2 m/s2 on the object. What is the mass of the object ?
Data:
F (force) = 5 N
m (mass) = ?
a (acceleration) = 2 m/s²
Solving:





Answer:
2.5 kg
_______________________________
I Hope this helps, greetings ... Dexteright02! =)
Answer: The ratio of f at the higher temperature to f at the lower temperature is 4.736
Explanation:
According to the Arrhenius equation,
or,
where,
= rate constant at 525K
= rate constant at 545K
= activation energy for the reaction = 185kJ/mol= 185000J/mol (1kJ=1000J)
R = gas constant = 8.314 J/mole.K
= initial temperature = 525 K
= final temperature = 545 K
Now put all the given values in this formula, we get
Therefore, the ratio of f at the higher temperature to f at the lower temperature is 4.736