1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
12

You step onto a hot beach with your bare feet. A generated in your foot, travels through your nervous system at an average speed

of 127 m/s. How much time does it take for the impulse, which travels a distance of 1.58m to reach your brain?
Physics
1 answer:
madreJ [45]3 years ago
7 0

Answer: 12.44 millisecond

Explanation:

Based on the information given, to know the time taken for the impulse, which travels a distance of 1.58m to reach the brain will be:

Time taken = Distance/Speed

Time taken = 1.58/127

Time taken = 0.01244

Time taken = 12.44 millisecond.

You might be interested in
A ball is thrown up in the air for 1 second and has a displacement of 5 m.
serg [7]
The ball drop 2kms in the air
5 0
3 years ago
Prove that..<br>please help<br>​
GaryK [48]

\large{ \boxed{ \bf{ \color{red}{Universal \: law \: of \: gravitation}}}}

Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them. The forces along the line joining the centre of the two objects.

❍ Let us consider two masses m1 and m2 line at a separation distance d. Let the force of attraction between the two objects be F.

According to universal law of gravitation,

\large{ \longrightarrow{ \rm{F \propto m_1 m_2}}}

Also,

\large{ \longrightarrow{ \rm{ F \propto  \dfrac{1}{ {d}^{2} } }}}

Combining both, We will get

\large{ \longrightarrow{ \rm{F  \propto  \dfrac{ m_1 m_2}{ {d}^{2}}}}}

Or, We can write it as,

\large{ \longrightarrow{ \rm{F  \propto  \:  G \dfrac{ m_1 m_2}{ {d}^{2} }}}}

Where, G is the constant of proportionality and it is called 'Universal Gravitational constant'.

☯️ Hence, derived !!

<u>━━━━━━━━━━━━━━━━━━━━</u>

8 0
3 years ago
0.054x2.33x90............
guapka [62]
<h2>0.054×2.33×90</h2><h3>=0.11582×90</h3><h3>=11.3238</h3>

please mark this answer as brainlist

5 0
2 years ago
Isotope what is the meaning
Nesterboy [21]

Isotope means that a chemical element that has the same number of protons but neutron number differs.

<u>Explanation:</u>

In isotope, the chemical element differs in neutron and nucleon number. Thus, different isotopes of a single component hold the same place in the periodic table.

Within the atom’s nucleus, protons are defined as an atomic number that is significantly equal to electrons in a neutral atom. An isotope of a given element has a different mass number. In general, every atomic number has a specific element, but in isotope, an atom may have a wide range of neutrons.

3 0
3 years ago
A quarterback is set up to throw the football to a receiver who is running with a constant velocity v⃗ rv→rv_r_vec directly away
Artist 52 [7]

Answer:

a) V_o,y = 0.5*g*t_c

b) V_o,x = D/t_c - v_r

c) V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

d)  Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

Explanation:

Given:

- The velocity of quarterback before the throw = v_r

- The initial distance of receiver = r

- The final distance of receiver = D

- The time taken to catch the throw = t_c

- x(0) = y(0) = 0

Find:

a) Find V_o,y, the vertical component of the velocity of the ball when the quarterback releases it.  Express V_o,y in terms of t_c and g.

b) Find V_o,x, the initial horizontal component of velocity of the ball.   Express your answer for V_o,x in terms of D, t_c, and v_r.

c) Find the speed V_o with which the quarterback must throw the ball.  

   Answer in terms of D, t_c, v_r, and g.

d) Assuming that the quarterback throws the ball with speed V_o, find the angle Q above the horizontal at which he should throw it.

Solution:

- The vertical component of velocity V_o,y can be calculated using second kinematics equation of motion:

                               y = y(0) + V_o,y*t_c - 0.5*g*t_c^2

                              0 = 0 + V_o,y*t_c - 0.5*g*t_c^2

                               V_o,y = 0.5*g*t_c

- The horizontal component of velocity V_o,x witch which velocity is thrown can be calculated using second kinematics equation of motion:

- We know that V_i, x = V_o,x + v_r. Hence,

                               x = x(0) + V_i,x*t_c

                               D = 0 + V_i,x*t_c

                               V_o,x + v_r = D/t_c

                                V_o,x = D/t_c - v_r

- The speed with which the ball was thrown can be evaluated by finding the resultant of V_o,x and V_o,y components of velocity as follows:

                           V_o = sqrt ( V_o,x^2 + V_o,y^2)

                          V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

       

- The angle with which it should be thrown can be evaluated by trigonometric relation:

                            tan(Q) = ( V_o,y / V_o,x )

                            tan(Q) = ( (0.5*g*t_c)/ (D/t_c - v_r) )

                                   Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

                           

                               

6 0
3 years ago
Other questions:
  • Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid ra
    10·1 answer
  • 3. A 92 kg Tarzan is holding on to a level 22m vine. He swings on the vine. What will his speed at the bottom of the swing be?
    14·1 answer
  • Bob is pushing a box across the floor at a constant speed of 1.2 m/s, applying a horizontal force whose magnitude is 75 N. Alice
    8·1 answer
  • Summarize Newton’s First Law
    8·1 answer
  • A ball is thrown straight upward with a velocity of 24m/s How much time passes before the ball strikes the ground? Disregard air
    13·1 answer
  • If the forces on an object are not balanced than the object must be...
    8·1 answer
  • A moving sidewalk has a velocity of 1.3 m/s north. If a man walks south on
    9·1 answer
  • Which electromagnetic wave has the highest frequency​
    9·2 answers
  • An 2.2 kg object accelerates at 4.0 m/s^2. What is the acceleration?
    7·1 answer
  • Let us be two cylindrical conductors connected in parallel, to which a potential difference of V = 170V is applied. The two cond
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!