Answer:
Specific heat of brass is 0.40 J g⁻¹ °C⁻¹ .
Explanation:
Given :
Mass of brass, m₁ = 440 g
Temperature of brass, T₁ = 97° C
Mass of water, m₂ = 350 g
Temperature of water, T₂ = 23° C
Specific heat of water, C₂ = 4.18 J g⁻¹ °C⁻¹
Equilibrium temperature, T = 31° C
Let C₁ be the specific heat of brass.
Heat loss by brass = Heat gain by water
m₁ x C₁ x ( T₁ -T ) = m₂ x C₂ x ( T - T₁ )
Substitute the suitable values in above equation.
440 x C₁ x (97 - 31) = 350 x 4.18 x (31 - 23)
C₁ = 
C₁ = 0.40 J g⁻¹ °C⁻¹
To determine your line of latitude , you would need to know the angle your location (line) makes with the equatorial plane at earth's center.
<h3>What is Line of latitude?</h3>
This is also referred to as parallels and it is defined as the imaginary lines that divide the Earth. They run from east to west and are used to specify the north and south sides of the Earth.
To determine the line of latitude , it is imperative to know the angle your location (line) makes with the equatorial plane at earth's center which is therefore the reason why it was chosen as the most appropriate choice.
Read more about Line of latitude here brainly.com/question/523705
#SPJ1
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

Answer:
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
Explanation:
This hypothesis is based on the fact that the speed of sound in air is v = 343 m / s with a small variation with temperature.
The speed of sound in solid soil is an average of the speed of its constituent media, giving values between
wood 3900 m / s
concrete 4000 m / s
fabrics 1540 m / s
earth 5000 m / s wave S
ground 7000 m / s P wave
we can see that the speed on solid earth is an order of magnitude greater than in air.
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
From the initial information, the wave going through the ground should arrive first.