Answer:
Average speed = 46.67 m/s
Explanation:
Given that the time taken in covering first 1000 m = 25 seconds.
The time taken in covering next 2.5 km = 50 seconds.
Total distance covered = 1000 m + 2500 m = 3500 m
Total time taken = 25+50=75 seconds
Average speed = Total distance covered / total time taken
= 3500/75 = 46.67 m/s
 
        
             
        
        
        
Answer:
v = 22.54 mph.
Explanation:
Given that,
Distance moved, d = 200 m
Time, t = 19.8 s
We need to find the runner's average speed.
We know that,
1 mile = 1609.34 m
200 m = 0.124 miles
19.8 seconds = 0.0055 h
So,
Speed = distance/time

So, the runner's average speed is 22.54 mph.
 
        
             
        
        
        
The answer is (a) because movement is acceleration 
        
             
        
        
        
<em>Energy</em><em> </em><em>can</em><em> </em><em>neither </em><em>be</em><em> </em><em>created </em><em>nor</em><em> </em><em>be</em><em> </em><em>destroyed</em><em> </em><em>but</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>converted</em><em> </em><em>from</em><em> </em><em>one</em><em> </em><em>form</em><em> </em><em>to</em><em> </em><em>another </em><em>.</em>
 
        
                    
             
        
        
        
Answer:
The total energy of the composite system is 7.8 J.
Explanation:
Given that,
Height = 0.15 m
Radius of circular arc = 0.27 m
Suppose, the entire track is friction less. a bullet with a m₁ = 30 g mass is fired horizontally into a block of wood with m₂ = 5.29 kg mass. the acceleration of gravity is 9.8 m/s.
Calculate the total energy of the composite system at any time after the collision.
We need to calculate the total energy of the composite system
Total energy of the system at any time = Potential energy of the system at the stopping point


Put the value in to the formula


Hence, The total energy of the composite system is 7.8 J.