Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
The ratio of the deflection when each is connected in turns to a cell of e.m.f 25 V and internal resistance 50 ohms is 13: 12
<h3>
</h3><h3>
What is internal resistance?</h3>
Internal resistance can be described as the resistance within a battery, or other voltage source, that causes a drop in the source voltage when there is a current.
The parameters given are :
Coil 1 = 50 turns
Coil 2 = 500 turns
Resistance 1 = 1022
Resistance 2 = 6002
Internal resistance = 50 ohms
Emf = 25v
I = 25/ 50+ 10
I = 25/60
I = 5/ 12 A
= 25/50+ 600
= 25/ 650
= 5/ 130 A
The ratio of the deflection when each is connected in turns to a cell of e.m. 25 V and internal resistance 50 ohms =
Q1/ Q2
Q1 = N1 x B x
/ c
Q2 = N2 x B x
/ c
therefore Q/ Q2 = (50 x 5/12 )/ (500 x 5/130)
Q1 / Q2 = 12/ 13 which 13: 12
Therefore, The ratio of the deflection when each is connected in turns to a cell of e.m. 25 V and internal resistance 50 ohms is 13: 12.
Learn more about internal resistance at; brainly.com/question/20595977
#SPJ1
Is there a picture so I can help you
Answer:
Current for 12 ohms = 2.5
Explanation:
Ohm's Law:
Voltage = IR
Current = V/R
Resistance = V/I
Therefore, current = 30V/12 Ohms
30/12 = 2.5
So current for 12 ohms = 2.5
I hope this helps :>
They were able to find the orbit of a comet and predict the year of its return.