C = 3 uf = 3 × 10^(-6) f
v = 6volts
Q = C.v
= <span>3 × 10^(-6) </span>× 6
= 18 × 10^(-6)
= 1.8 = 10^(-5)
Answer:
During the voyage Charles Darwin explored the Galapagos islands and noticed the same species have different adaptations in places. ... Charles noticed that each species has the same ancestor but they evolve to adapt over time so they can live longer.
Explanation:
Answer:
The maximum altitude reached with respect to the ground = 0.5 + 0.510 = 1.01 km
Explanation:
Using the equations of motion,
When the rocket is fired from the ground,
u = initial velocity = 0 m/s (since it was initially at rest)
a = 10 m/s²
The engine cuts off at y = 0.5 km = 500 m
The velocity at that point = v
v² = u² + 2ay
v² = 0² + 2(10)(500) = 10000
v = 100 m/s
The velocity at this point is the initial velocity for the next phase of the motion
u = 100 m/s
v = final velocity = 0 m/s (at maximum height, velocity = 0)
y = vertical distance travelled after the engine shuts off beyond 0.5 km = ?
g = acceleration due to gravity = - 9.8 m/s²
v² = u² + 2gy
0 = 100² + 2(-9.8)(y)
- 19.6 y = - 10000
y = 510.2 m = 0.510 km
So, the maximum altitude reached with respect to the ground = 0.5 + 0.510 = 1.01 km
Hope this helps!!!
Answer:
The thermal conductivity of the wall = 40W/m.C
h = 10 W/m^2.C
Explanation:
The heat conduction equation is given by:
d^2T/ dx^2 + egen/ K = 0
The thermal conductivity of the wall can be calculated using:
K = egen/ 2a = 800/2×10
K = 800/20 = 40W/m.C
Applying energy balance at the wall surface
"qL = "qconv
-K = (dT/dx)L = h (TL - Tinfinity)
The convention heat transfer coefficient will be:
h = -k × (-2aL)/ (TL - Tinfinty)
h = ( 2× 40 × 10 × 0.05) / (30-26)
h = 40/4 = 10W/m^2.C
From the given temperature distribution
t(x) = 10 (L^2-X^2) + 30 = 30°
T(L) = ( L^2- L^2) + 30 = 30°
dT/ dx = -2aL
d^2T/ dx^2 = - 2a
Answer : B) The cow pulls back on the girl.
From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.