Answer:
It like the once like Line with smaller angle (DBC) measure wouldn't 30* and by the exam the ratio of angle use by subjective by multiplying as large of angle.
oh, by the way I think I hope I'm right so good luck with that?
Answer:
2x + 6
Step-by-step explanation:
distribution
plz mark branliest
Allen's work is not written properly so I have rearranged it as shown below:
Original problem) –8.3 + 9.2 – 4.4 + 3.7.
Step 1) −8.3 + 9.2 + 4.4 + 3.7 Additive inverse
Step 2) −8.3 + 4.4 + 9.2 + 3.7 Commutative property
Step 3) −8.3 + (4.4 + 9.2 + 3.7) Associative property
Step 4) −8.3 + 17.3
We can see that in step 1), Allen changed -4.4 into +4.4 using additive inverse. Notice that we are simplifying not eliminating -4.4 as we do in solving some equation. Hence using additive inverse is the wrong step.
Alen should have collect negative numbers together and positive numbers together.
Add the respective numbers then proceed to get the answer.
–8.3 + 9.2 – 4.4 + 3.7
= –8.3 – 4.4 + 9.2 + 3.7
= -12.7 + 12.9
= 0.2
You have said that he used 180 in the first two weeks.
That left him with 200 at the end of the first two weeks.
Then you said that he had 2 left after another 2 weeks.
So during those 2 weeks, he used (200 - 2) = 198 in the 2nd 2 weeks.
What we all expected has not happened at all: Frank is not slowing down !
But, even so, we have to ask ourselves just what Frank is doing with them all.
Nobody can blame you for wondering.
An exponential or geometric function can be expressed as a power of t, where t is time.
This means that if you can fit all three values into the formula
S = S0 * (1+r)^t
for a constant r, and t=1, 2, 3 (or 0, 1, 2 for simplicity), then it's exponential.
You can see right away that the first and second sets of numbers are not exponential. These are linear, because each month is a fixed value greater than the previous one.
If you look at the formula above, you can see that each successive time interval's growth can be calculated by multiplying a fixed value to the previous intervals. For example, the second month is given by:
S(1) = S0 * (1+r)
S(2) = S0 * (1+r)^2 = S0 * (1+r) * (1+r) = S(1) * (1+r)
Since each month's sales is 102% the previous month's in the fourth set, this is the one you want.