<span>this
could be a substitution reaction. as you will locate, between the
hydrogen's on the propane chain replaced into substituted for a Br from
Br2. that's particularly no longer a addition reaction! addition
reactions artwork once you have a AlkENE! by using fact that's an AlkANE
it would not have a double bond to act as a nucleophile to attack the
Br2 (which might act as a electrophile to boot reactions).</span>
This process is called meiosis! good luck!
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Answer:
they're losing electrolytes
Explanation:
When athletes sweat, they're losing electrolytes primarily in the form of sodium (Na+) and chloride (Cl-), so when you start to replace lost fluids, ahtletes should replace the electrolytes as well. Potassium (K+), Magnesium (Mg2+) and Calcium (Ca2+) are electrolytes also lost through sweating.