Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible to set up the following energy equation for both objects 1 and 2:

In terms of mass, specific heat and temperature change is:

Now, solve for the final temperature, as follows:

Then, plug in the masses, specific heat and temperatures to obtain:

Yet, the values do not seem to have been given correctly in the problem, so it'll be convenient for you to recheck them.
Regards!
One of the examples is radiation and chemistry of water. Environmental science requires the capacity to integrate data from the greater part of the significant fields of science, and in addition from arithmetic.
Geology is vital on the grounds that huge scale arrives forms make geology. The presence of mountains and valleys influences how much daylight and precipitation achieve the ground, how breezy an area is, the manner by which precipitation keeps running off, and numerous different variables that figure out what plants and creatures will have the capacity to occupy a district.
Answer:
586 kpa(kilopascal/1000 pascals)
Explanation:
given 1.24 atm(standard atmosphere), and 66.7 psi(pound force per square inch).
To find the total pressure we should use dalton's law of partial pressures which is the sum of the pressures of each individual gas.
then we convert them to pascals and divide by 1000 to get the measurement in kilopascal.
knowing that 1 atmosphere is proportional to around 14.696 psi. We can multiply our given measure of atm by that and sum it by psi like so. 1.24×14.6959 = 18.22298.
Then,
18.22298+ 66.7 = 84.92298
psi.
Since 1 psi is proportional to around 6894.76 pascals. 1 psi will be 68.9476 kilopascal. 84.92298 * 6.89476 = 585.523336 ≈ 586
Answer:
Explanation:
Option B is the correct answer