Answer:
The new volume of the gas is 276.45 mL.
Explanation:
Charles's law indicates that for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases, and as the temperature decreases, the volume of the gas decreases.
Charles's law is a law that mathematically says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:

Analyzing an initial state 1 and a final state 2, it is satisfied:

In this case:
- V1= 250 mL
- T1= 293 K
- V2= ?
- T2= 324 K
Replacing:

Solving:

V2= 276.45 mL
<em><u>The new volume of the gas is 276.45 mL.</u></em>
Answer:
K⁺ (aq) + F⁻ (aq) + H⁺ (aq) + Cl⁻ (aq) → KCl (aq) + H⁺ (aq) + F⁻ (aq)
Explanation:
KF (aq) + HCl (aq) → KCl (aq) + HF (aq)
KF (aq) → K⁺ (aq) + F⁻ (aq)
HCl (aq) → H⁺ (aq) + Cl⁻ (aq)
KCl (aq) → K⁺ (aq) + Cl⁻ (aq)
HF (aq) → H⁺ (aq) + F⁻ (aq)
In 1st orbit 2
2nd 8
3rd 10
f orbital has 16
When the product formation is decreased if a substance B is added to an enzyme reaction and more substrate being added would not increase the amount of produce formed, then we assume that substance b could be a noncompetitive inhibitor. This type of inhibitor would be one that would bind to the enzyme with or without the presence of a substrate in different sites at the same time. It would change the conformation of the enzyme and also the active sites. As a result, the substrate would not be able to bind to the enzyme more effectively than the usual. The overall efficiency would decrease.