Answer:
860 J / mol
Explanation:
Enthalpy = Energy / no. of moles
no. of moles = mass / molar mass
Take the atomic mass of H = 1.0,
molar mass of H2 = 1.0 x 2
= 2.0
no. of moles of H2 = 9.00/2
= 4.5 mol
Hence,
Enthalpy = 3870 / 4.5
=860 J / mol
Answer:
ester
Explanation:
Carboxylic acids and alcohols react in the presence of strong acid to produce an ester and water. The two carbon chains come together, which is the condensation, and then water is generated, which is dehydration. The resulting compound is an ester.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
C) It has a constant average kinetic energy
Explanation:
The average kinetic energy of the particles in a gas is directly proportional to the temperature of the gas, according to the equation.
k is the Boltzmann's constant
T is the absolute temperature of the gas
Therefore, temperature of a gas is a measure of the average kinetic energy of the particles.
In this problem, we are told that the gas is at constant temperature (and volume): therefore, according to the previous equation, this means that the average kinetic energy is also constant.
Answer:c it’s dropped off in the kidneys
Explanation:
I took the quiz