Answer:
A linear relationship (or linear association) is a statistical term used to describe a straight-line relationship between two variables. Linear relationships can be expressed either in a graphical format or as a mathematical equation of the form y = mx + b. Linear relationships are fairly common in daily life.
Step-by-step explanation:
Using the binomial distribution, it is found that there is a 0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
With 5 shoots, the probability of making at least one is
, hence the probability of making none, P(X = 0), is
, hence:

![\sqrt[5]{(1 - p)^5} = \sqrt[5]{\frac{232}{243}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%281%20-%20p%29%5E5%7D%20%3D%20%5Csqrt%5B5%5D%7B%5Cfrac%7B232%7D%7B243%7D%7D)
1 - p = 0.9908
p = 0.0092
Then, with 6 shoots, the parameters are:
n = 6, p = 0.0092.
The probability that at least two of them make it inside the recycling bin is:

In which:
[P(X < 2) = P(X = 0) + P(X = 1)
Then:



Then:
P(X < 2) = P(X = 0) + P(X = 1) = 0.9461 + 0.0527 = 0.9988

0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
The answer would be 16 S'mores and the limiting reactant would be the grahams.
(This is assuming that S'mores would need 2 grahams, 1 marshmallow and 1 chocolate piece.)
Limiting reactant would be the reactant that runs out first.
Let's take your problem into account and see what we have:
48 marshallows
32 grahams (2 x 16 per pack)
45 chocolate pieces (5 x 15 pieces per bar)
Since need 2 of the grahams per S'more then the maximum yield of the grahams is 16 S'mores.
The maximum yield of marshmallows is 48.
The maximum yield of chocolate is 45.
Since you cannot make S'mores without the grahams, then you can only make 16 S'mores before the grahams run out.
5.
f(K) = D^3 => f(25) = 125 => 25 * t = 125 ( because K is directly proportional with D^3 )=> t = 125 / 25 => t = 5 => f(25) = 25 * 5 => K * 5 = D^3 ;
6.
f(L) = F^3 => f(2) =3^3 =>f(2) = 27 => 2 / t =27 => t = 2 / 27 => t = 0.074 => f(2) = 2 / 0.074 => K / 0.074 = F^3 ;