C
explanation:
6(1)-39=-33
6(2)-39=-27
9514 1404 393
Answer:
4) 6x
5) 2x +3
Step-by-step explanation:
We can work both these problems at once by finding an applicable rule.

where O(h²) is the series of terms involving h² and higher powers. When divided by h, each term has h as a multiplier, so the series sums to zero when h approaches zero. Of course, if n < 2, there are no O(h²) terms in the expansion, so that can be ignored.
This can be referred to as the <em>power rule</em>.
Note that for the quadratic f(x) = ax^2 +bx +c, the limit of the sum is the sum of the limits, so this applies to the terms individually:
lim[h→0](f(x+h)-f(x))/h = 2ax +b
__
4. The gradient of 3x^2 is 3(2)x^(2-1) = 6x.
5. The gradient of x^2 +3x +1 is 2x +3.
__
If you need to "show work" for these problems individually, use the appropriate values for 'a' and 'n' in the above derivation of the power rule.
Answer:
I will need 26.4 pounds of the expensive nuts and 1.6 pounds of the cheap nuts.
Step-by-step explanation:
Since I have one type of nut that sells for $ 4.50 / lb and another type of nut that sells for $ 8.00 / lb, and I would like to have 28 lbs of a nut mixture that sells for $ 7.80 / lb, to determine how much of each nut will I need to obtain the desired mixture, the following calculation must be performed:
8 x 0.95 + 4.5 x 0.05 = 7.825
8 x 0.94 + 4.5 x 0.06 = 7.79
0.94 x 28 = 26.32
26.4 x 8 + 1.6 x 4.5 = 218.4
218.4 / 28 = 7.8
Thus, I will need 26.4 pounds of the expensive nuts and 1.6 pounds of the cheap nuts.
Answer:
y=-3.571
Step-by-step explanation:
To get rid of the x's make the other x cancel out the other.
5x-y=25+(-5(x+4y=-10)=-21y=75= -3.571