(tan(<em>x</em>) + cot(<em>x</em>)) / (tan(<em>x</em>) - cot(<em>x</em>)) = (tan²(<em>x</em>) + 1) / (tan²(<em>x</em>) - 1)
… = (sin²(<em>x</em>) + cos²(<em>x</em>)) / (sin²(<em>x</em>) - cos²(<em>x</em>))
… = -1/cos(2<em>x</em>)
Then as <em>x</em> approaches <em>π</em>/2, the limit is -1/cos(2•<em>π</em>/2) = -sec(<em>π</em>) = 1.
Answer: 4
Step-by-step explanation:
Given the following :
P = probability of success = 0.5
n = number of trials = 8
The expected value of a binomial distribution with probability of success P and number of trials n is defined by:
E(n, p) = n * p
Therefore, expected value when P = 0.5 and n = 8
E(8, 0.5) = 8 × 0.5
= 4
The expected value of the binomial distribution is 4
Answer:
7x-4 = -28
4y+8 = 4(y + 2)
Step-by-step explanation:
Answer:
-1
Step-by-step explanation:
its just -1beacuse I did it