Answer:
The pressure of the gas would decrease
Explanation:
The average kinetic energy of 1 mole of a gas at -32 degrees Celsius is:
3.80 x 103 J
The relationship between volume and temperature of a gas, when pressure and moles of a gas are held constant, is: V*T = k.
FALSE
The relationship between moles and volume, when pressure and temperature of a gas are held constant, is: V/n = k. We could say then, that:
If the moles of gas are tripled, the volume must also triple.
If the temperature and volume of a gas are held constant, an increase in pressure would most likely be caused by an increase in the number of moles of gas.
TRUE
If the vapor pressure of a liquid is less than the atmospheric pressure, the liquid will not boil.
TRUE
35 - AB
36 - BD
33 - true
34 - False
20 - 6
21 - orthohombic
Answer:
Moles of carbon dioxide gas is 0.584 moles.
Mass of 0.584 moles of carbon dioxide gas is 25.7 g
Explanation:
Using ideal gas equation
PV = nRT
where,
P = Pressure of gas = 
V = Volume of gas = 30.0 L
n = number of moles of gas = ?
R = Gas constant = 0.0821 L.atm/mol.K
T = Temperature of gas = 27°C = 300.15 K
Putting values in above equation, we get:

Moles of carbon dioxide gas = 0.584 moles
Mass of 0.584 moles of carbon dioxide gas = 0.584 mol × 44 g/mol = 25.69 g ≈ 25.7 g
Hello!
The formula is density = mass / volume
=> volume = mass / density
volume = ?
mass = 2500.0 g
density = 10.5 g/cm3
volume = mass / density
volume = 2500.0 g / 10.5 g/cm3
volume = 2380.95 cm3
Hope this help!
Explanation:
The answer for this question depends on the type of meniscus in the cylinder. If it is an upright meniscus like in water, the reading should be taken at the bottom of the meniscus. However if it is an inverted meniscus like in mercury, the reading should be taken at the top of the meniscus.
(Can you check and see if there's any pictures or information that is missing?)