The particles of gases have more kinetic energy than liquids and gases.
Explanation:
- We know that in case of solids the molecules are very tightly packed , in case of liquids the molecules are loosely packed and lastly in case of gases the molecules are very loosely packed.
- As we known in case of solids energy present is very less and in case of liquids energy present is more than solids and lastly in case of gases the energy present is most.
- Gases have more kinetic energy because the particles present in gaseous form can move easily without any obstruction.
In order to accomplish work on an object there must be a force exerted on the object and it must move in the direction of the force. ... For the special case of a constant force, the work may be calculated by multiplying the distance times the component of force which acts in the direction of motion.
Answer:
The most effective buffer at pH 9.25 will be a mixture of 1.0 M NH3 and 1.0 M NH4Cl
Explanation:
Step 1: Data given
pH of a buffer = pKa + log ([A-]/[Ha])
a mixture of 1.0 M HC2H3O2 and 1.0 M NaC2H3O2 (Ka for acetic acid = 1.8 x 10-5)
pH = -log( 1.8 * 10^-5) + log (1/1)
pH = -log( 1.8 * 10^-5)
pH = 4.74
a mixture of 1.0 M NaCN and 1.0 M KCN (Ka for HCN = 4.9 x 10-10)
pH = -log( 4.9 * 10^-10) + log (1/1)
pH = -log( 1.8 * 10^-5)
pH = 9.30
a mixture of 1.0 M HCl and 1.0 M NaCl
The solution made from NaCl and HCl will NOT act as a buffer.
HCl is a strong acid while NaCl is salt of strong acid and strong base which do not from buffer solutions hence due to HCl PH is less than 7.
a mixture of 1.0 M NH3 and 1.0 M NH4Cl (Kb for ammonia = 1.76 x 10^-5)
Ka * Kb = 1*10^-14
Ka = 10^-14 / 1.76*10^-5
Ka = 5.68*10^-10
pH = -log( 5.68*10^-10) + log (1/1)
pH = -log( 5.68*10^-10)
pH = 9.25
The most effective buffer at pH 9.25 will be a mixture of 1.0 M NH3 and 1.0 M NH4Cl
Answer:
Stoichiometric Values in a Chemical Reaction
Explanation:
The coefficients next to the reactants and products are the stoichiometric values. They represent the number of moles of each compound that needs to react so that the reaction can go to completion.