The greatest whole possible whole number length of the unknown side is 9 inches
<em><u>Solution:</u></em>
Two sides of an acute triangle measure 5 inches and 8 inches
The length of the longest side is unknown
We have to find the length of unknown side
The longest side of any triangle is a hypotenuse
<em><u>For a acute triangle we know:</u></em>
If c is the longest side of a acute triangle, a and b are other two sides of a acute triangle then the condition that relates these three sides are given as:

Here in this sum,
a = 5 inches
b = 8 inches
c = ?
Substituting we get,

On rounding to nearest whole number,
c < 9
Hence, to the greatest whole possible whole number length of the unknown side is 9 inches
To solve using completing square method we proceed as follows:
x^2-10x+8=0
x^2-10x=-8
but
c=(b/2)^2
c=(10/2)^2=25
thus we can add this in our expression to get
x^2-10x+25=8+25
factorizing the LHS we get:
(x-5)(x-5)=33
(x-5)^2=33
getting the square roots of both sides we have:
x-5=+/-√33
x=5+/-√33
Answer:
(-6, 0) and (3, 0)
Step-by-step explanation:
I think you meant f(x) = (x + 6)(x - 3). This graph intersects the x-axis in two places: (-6, 0) and (3, 0). These are the "x-intercepts."
Answer
Find out how many seconds faster has Alexandria's time then Adele's time .
To proof
Let us assume that seconds faster has Alexandria's time then Adele's time be x.
As given in the question
Adele Swam the length of the pool in 32.56 seconds. Alexandria swam the length of the pool in 29.4 seconds.
Than the equation becomes
x = 32.56 - 29.4
x = 3.16 seconds
Therefore the 3.16 seconds faster has Alexandria's time then Adele's time .
Hence proved