1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
3 years ago
13

I will give you brainliest if you help me with this

Mathematics
2 answers:
sveta [45]3 years ago
5 0

Answer:

a.0.25

b.15/100=3/20

c.17*100/40=1700/40=42.5%

Oksi-84 [34.3K]3 years ago
5 0

ohkkk

decomposition reaction is a reaction in which one compounds breaks out to form two or more products .

You might be interested in
The RADIUS of the barrel is 2. <br><br> What is the circumference of the barrel?
Damm [24]
The circumference is about 12. This would been a bit easier if I knew the diameter.
6 0
3 years ago
Read 2 more answers
Kalvin tosses a coin five days in a row and gets tails every time. Do you think there is something wrong with the coin? How can
riadik2000 [5.3K]
I don’t think there is anything wrong with the coming there is just a 50% chance that It would land on tails and there’s a 50% chance that it will land on heads ‍♀️☺️
7 0
4 years ago
Use synthetic substitution to find p(3) for p(x)=x^3-2x^2-x+2
Lilit [14]
P(3)= 3^3 - 2(3)^2 - 3 +2
p(3)= 9 - 18 - 1
Answer: p(3)= -10
5 0
3 years ago
Read 2 more answers
Music lessons cost $20 per week. How much do 6 weeks of lessons cost? i need the expression
Darya [45]

Answer:

20+20+20+20+20+20= 120

Step-by-step explanation:

2^6 = 120 hope this helps! plz mark brainliest

7 0
3 years ago
Read 2 more answers
What is the mean of this discrete random variable? That is, what is EP), the expected value of X? O A. 32.63 O B. 31.47 O C. 29.
kkurt [141]

According to this formula, we take each observed X value and multiply it by its respective probability. We then add these products to reach our expected value. You may have seen this before referred to as a weighted average. It is known as a weighted average because it takes into account the probability of each outcome and weighs it accordingly. This is in contrast to an unweighted average which would not take into account the probability of each outcome and weigh each possibility equally.

Let's look at a few examples of expected values for a discrete random variable:

Example

 

A fair six-sided die is tossed. You win $2 if the result is a “1,” you win $1 if the result is a “6,” but otherwise you lose $1.

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span></span>

The interpretation is that if you play many times, the average outcome is losing 17 cents per play. Thus, over time you should expect to lose money.

 

Example

 

Using the probability distribution for number of tattoos, let's find the mean number of tattoos per student.

<span>Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students<span><span>Tattoos01234</span><span>Probability.850.120.015.010.005</span></span></span>

<span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span></span>

The mean number of tattoos per student is .20.

 

Symbols for Population Parameters

Recall from Lesson 3, in a sample, the mean is symbolized by <span><span>x<span>¯¯¯</span></span><span>x¯</span></span> and the standard deviation by <span>ss</span>. Because the probabilities that we are working with here are computed using the population, they are symbolized using lower case Greek letters. The population mean is symbolized by <span>μμ</span> (lower case "mu") and the population standard deviation by <span>σσ</span>(lower case "sigma").

<span><span> Sample StatisticPopulation Parameter</span><span>Mean<span><span>x<span>¯¯¯</span></span><span>x¯</span></span><span>μμ</span></span><span>Variance<span><span>s2</span><span>s2</span></span><span><span>σ2</span><span>σ2</span></span></span><span>Standard Deviation<span>ss</span><span>σσ</span></span></span>

Also recall that the standard deviation is equal to the square root of the variance. Thus, <span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

Standard Deviation of a Discrete Random Variable

Knowing the expected value is not the only important characteristic one may want to know about a set of discrete numbers: one may also need to know the spread, or variability, of these data. For instance, you may "expect" to win $20 when playing a particular game (which appears good!), but the spread for this might be from losing $20 to winning $60. Knowing such information can influence you decision on whether to play.

To calculate the standard deviation we first must calculate the variance. From the variance, we take the square root and this provides us the standard deviation. Conceptually, the variance of a discrete random variable is the sum of the difference between each value and the mean times the probility of obtaining that value, as seen in the conceptual formulas below:

Conceptual Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span><span>−−−−−−−−−−−</span>√</span>]</span><span>σ=<span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span>]</span></span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

In these expressions we substitute our result for E(X) into <span>μμ</span> because <span>μμ</span> is the symbol used to represent the mean of a population .

However, there is an easier computational formula. The compuational formula will give you the same result as the conceptual formula above, but the calculations are simplier.

Computational Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span><span>σ2</span>=[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span>−−−−−−−−−−−−</span>√</span></span><span>σ=<span>[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span></span><span> 
</span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

Notice in the summation part of this equation that we only square each observed X value and not the respective probability. Also note that the <span>μμ</span> is outside of the summation.

Example

Going back to the first example used above for expectation involving the dice game, we would calculate the standard deviation for this discrete distribution by first calculating the variance:

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span><span>σ2</span>=[∑<span>x2i</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span><span><span>σ2</span>=[∑<span>xi2</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span></span>

<span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span></span>

The variance of this discrete random variable is 1.472.

<span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

<span><span>σ=<span>1.472<span>−−−−</span>√</span>=1.213</span><span>σ=1.472=1.213</span></span>

The standard deviation of this discrete random vairable is 1.213. hope this helps

7 0
4 years ago
Read 2 more answers
Other questions:
  • The temperature is dropping 4° each hour how many degrees will temperature dropped in seven hours
    12·1 answer
  • Plz, I'm desperate for 5 answers. help me ASAP on the attachments I'll give everything I can, Brainly award, high ratings, thank
    11·1 answer
  • Name the value of the 5's in the number 5,500
    10·1 answer
  • The most accurate way to state an "odds ratio" is:
    11·1 answer
  • Please help need answer asp
    11·2 answers
  • Which question is equivalent to 5+n
    13·1 answer
  • If OP=17 and QP=6, what is OQ? First, complete the Segment Addition Postulate for this problem.
    9·1 answer
  • I WILL GIVE BRAINLIEST PLEASE
    13·2 answers
  • Triangle Q S R is shown. Angle Q S R is a right angle. Altitude s is drawn from point S to point T on side Q R to form a right a
    9·1 answer
  • .Solve the following equations, leaving your answer as a fraction where appropriate: 10(2x + 12) = -7(x + 12) ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!