Answer:
The process from a liquid to a vapor.
Explanation:
Water is evaporated by heating up and turning into a vapor.
Answer:
Impossible.
Explanation:
The ideal Coefficient of Performance is:


The real Coefficient of Performance is:


Which leads to an absurds, since the real Coefficient of Performance must be equal to or lesser than ideal Coefficient of Performance. Then, the cycle is impossible, since it violates the Second Law of Thermodynamics.
Answer: To show his father what he had done
Explanation:
Percy Jackson is the son of the great Greek god of the seas, Poseidon. He did not however, know this for a long time. After he finds out, his life becomes more exciting as he embarks on many adventures.
According to Grover who is his best friend and guardian, Percy sent Medusa's head to Mount Olympus to show his father what he had done so that Poseidon would acknowledge and be proud of him.
Answer:
a) 8kW
b) $128
Explanation:
Given the coefficient of performance of the heat pump cycle to be 2.5
Energy delivered by the heat pump = 20kW
a) net power required to operate the heat pump = Energy delivered / coefficient of performance
Net power required = 20/2.5
= 8kW
b) Given the cost of electricity is $0.08 for 1kWhour
Since net power required to operate heat pump = 8kW
If the heat pump operate for 200hours, total power required for a month = 8kW×200hours = 1600kWhour
since 1kWh of electricity costs $0.08, cost of electricity used in a month when the pump operates for 200hour will be 1600kWh×$0.08 which is equivalent to $128
Answer:
<em>A stable ride</em>
Explanation:
A Catamaran hull is a form of sea craft invented by the Austronesian peoples, the invention of the Catamaran hull enabled these people to sail across the sea in their expansion to the islands of the Indian and Pacific Oceans. Catamaran has multiple hulls, usually two parallel hulls of equal size. This geometric feature gives the craft an increased stability because,<em> it derives extra stability from its wide beam, in the place of a ballasted keel employed in a regular monohull sailboat. </em>A Catamaran hull will require four times the force needed to capsize it, when compared to an equivalent monohull.