The pressure difference across the sensor housing will be "95 kPa".
According to the question, the values are:
Altitude,
Speed,
Pressure,
The temperature will be:
→ ![T = 15.04-[0.00649(9874)]](https://tex.z-dn.net/?f=T%20%3D%2015.04-%5B0.00649%289874%29%5D)
→ 
→ 
now,
→ ![P_o = 101.29[\frac{(-49.042+273.1)}{288.08} ]^{(5.256)}](https://tex.z-dn.net/?f=P_o%20%3D%20101.29%5B%5Cfrac%7B%28-49.042%2B273.1%29%7D%7B288.08%7D%20%5D%5E%7B%285.256%29%7D)
→
hence,
→ The pressure differential will be:
= 
= 
Thus the above solution is correct.
Learn more about pressure difference here:
brainly.com/question/15732832
Answer: 78.89%
Explanation:
Given : Sample size : n= 1200
Sample mean : 
Standard deviation : 
We assume that it follows Gaussian distribution (Normal distribution).
Let x be a random variable that represents the shaft diameter.
Using formula,
, the z-value corresponds to 2.39 will be :-

z-value corresponds to 2.60 will be :-

Using the standard normal table for z, we have
P-value = 

Hence, the percentage of the diameter of the total shipment of shafts will fall between 2.39 inch and 2.60 inch = 78.89%
Answer:Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process
Explanation:
Answer and Explanation:
O decreases linearly with the distance from the generator