Answer:
thoroughly scrutinizing, especially in a disconcerting way.
Explanation:
Solution :
The nuclear reaction for boron is given as :

And the reaction for Cadmium is :
![$^{113}\textrm{Cd}_48 + ^{1}\textrm{n}_0 \rightarrow ^{114}\textrm{Cd}_48 + \gamma [5 \ \textrm{MeV}]$](https://tex.z-dn.net/?f=%24%5E%7B113%7D%5Ctextrm%7BCd%7D_48%20%2B%20%5E%7B1%7D%5Ctextrm%7Bn%7D_0%20%5Crightarrow%20%5E%7B114%7D%5Ctextrm%7BCd%7D_48%20%2B%20%5Cgamma%20%5B5%20%5C%20%5Ctextrm%7BMeV%7D%5D%24)
We know that it is easier that to shield or stop an alpha particle (i.e. He nucli) as they can be stopped or obstructed by only a few centimetres of the material. However, the gamma rays ( γ ) can penetrate through the material to a greater distance. Therefore, we can choose the first one.
Answer:
a) 0.3
b) 3.6 mm
Explanation:
Given
Length of the pads, l = 200 mm = 0.2 m
Width of the pads, b = 150 mm = 0.15 m
Thickness of the pads, t = 12 mm = 0.012 m
Force on the rubber, P = 15 kN
Shear modulus on the rubber, G = 830 GPa
The average shear strain can be gotten by
τ(average) = (P/2) / bl
τ(average) = (15/2) / (0.15 * 0.2)
τ(average) = 7.5 / 0.03
τ(average) = 250 kPa
γ(average) = τ(average) / G
γ(average) = 250 kPa / 830 kPa
γ(average) = 0.3
horizontal displacement,
δ = γ(average) * t
δ = 0.3 * 12
δ = 3.6 mm
Answer:
Option (c) and option (d)
Explanation:
Eutectic system is one in which a solid and homogeneous mixture of two or more substances resulting in the formation of super lattice is formed which can melt or solidify at a temperature lower than the melting point of any individual metal.
Eutectic alloys are those which have its components mixed in a specific ratio.
It is the composition in an alloy system for which both the liquidus and solidus temperatures are equal.
Eutectic alloys have the composition in which the melting point of the metal is lower than the other alloy composition.
Answer:
7.07%
Explanation:
Thermal efficiency can be by definition seen as the ratio of the heat utilized by a heat engine to the total heat units in the fuel consumed.
We will determine the thermal efficiency of the given problem at the attached file.