1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
6

A sample of a radioactive substance decayed to 97% of its original amount after a year. (Round your answers to two decimal place

s.) (a) What is the half-life of the substance? 22.76 Correct: Your answer is correct. yr (b) How long would it take the sample to decay to 85% of its original amount? yr
Mathematics
1 answer:
Andrej [43]3 years ago
8 0

Answer:

a) The half life of the substance is 22.76 years.

b) 5.34 years for the sample to decay to 85% of its original amount

Step-by-step explanation:

The amount of the radioactive substance after t years is modeled by the following equation:

P(t) = P(0)(1-r)^{t}

In which P(0) is the initial amount and r is the decay rate.

A sample of a radioactive substance decayed to 97% of its original amount after a year.

This means that:

P(1) = 0.97P(0)

Then

P(t) = P(0)(1-r)^{t}

0.97P(0) = P(0)(1-r)^{0}

1 - r = 0.97

So

P(t) = P(0)(0.97t)^{t}

(a) What is the half-life of the substance?

This is t for which P(t) = 0.5P(0). So

P(t) = P(0)(0.97t)^{t}

0.5P(0) = P(0)(0.97t)^{t}

(0.97)^{t} = 0.5

\log{(0.97)^{t}} = \log{0.5}

t\log{0.97} = \log{0.5}

t = \frac{\log{0.5}}{\log{0.97}}

t = 22.76

The half life of the substance is 22.76 years.

(b) How long would it take the sample to decay to 85% of its original amount?

This is t for which P(t) = 0.85P(0). So

P(t) = P(0)(0.97t)^{t}

0.85P(0) = P(0)(0.97t)^{t}

(0.97)^{t} = 0.85

\log{(0.97)^{t}} = \log{0.85}

t\log{0.97} = \log{0.85}

t = \frac{\log{0.85}}{\log{0.97}}

t = 5.34

5.34 years for the sample to decay to 85% of its original amount

You might be interested in
Help me! Im having trouble if you can please answer and give an explanation! The best one will get brainlist!
jasenka [17]
For the second work sheet:
5 2/8 - 4 1/4= 1 so NO
8 3/4 - 7 1/2= 1 1/4 so YES
2 1/8 - 1 7/8= 1/4 so NO
9 5/12 - 8 1/6= 1 1/4 so YES
Sorry if its not enough explanation, hope it helps!
8 0
2 years ago
5. Solve for x:<br> | 5x – 4 =16
Natali5045456 [20]

Answer:

x=4

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros.
butalik [34]
I'll try to understand this but I don't really get it because I'm in middle school
6 0
3 years ago
Write an equation for a linear function whose graph has the given characteristics.
Sophie [7]

Answer:

y-1=1/4(x-8)

x-4y-4=0

7 0
3 years ago
Other questions:
  • LESSON 2-1 PRACTICE
    13·1 answer
  • If tim was 5 in 1990 and its 2020 how old is tim
    5·2 answers
  • A rectangular flower garden in Samantha’s backyard has 100 feet around its edge the width of the garden is 20 feet what is the l
    8·1 answer
  • 3Pounds = How many ounces is in a 3Pounds?​
    8·2 answers
  • If the Revenue for the week is $2000, and labor cost consists of two workers earning $8 per hour who work 40 hours each, what is
    5·1 answer
  • . Find the greatest number of students to whom 24 pens and
    15·1 answer
  • En los numeros 4,5,8,10 y 11 cual es el numero que menos se repite
    5·1 answer
  • Different machines pack boxes. Which ratio represents each of the machines?
    15·1 answer
  • Marks own a carpet store and sells hallway runners for k9.52/linear foot. a) How much is this per linear yard? b) How much is th
    8·1 answer
  • →The number line below represents which equation?←
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!