Each element of the matrix are multiplied by the scalar to form a matrix of
same size as the original matrix in matrix scalar multiplication.
Reasons:
The matrix <em>A</em> is presented as follows;
![A = {\left[\begin{array}{ccc}4&6&8\\6&8&10\end{array}\right]}](https://tex.z-dn.net/?f=A%20%3D%20%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%266%268%5C%5C6%268%2610%5Cend%7Barray%7D%5Cright%5D%7D)
Using the multiplication of a matrix and a scalar, we have;
![60 \cdot A = 60 \cdot \left[\begin{array}{ccc}4&6&8\\6&8&10\end{array}\right] = \left[\begin{array}{ccc}60 \times 4&60 \times 6&60 \times 8\\60 \times 6&60 \times 8&60 \times 10\end{array}\right] = \left[\begin{array}{ccc}\mathbf{240}&\mathbf{360}&\mathbf{480}\\\mathbf{360}&\mathbf{480}&\mathbf{600}\end{array}\right]](https://tex.z-dn.net/?f=60%20%5Ccdot%20A%20%3D%2060%20%5Ccdot%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%266%268%5C%5C6%268%2610%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D60%20%5Ctimes%204%2660%20%5Ctimes%206%2660%20%5Ctimes%208%5C%5C60%20%5Ctimes%206%2660%20%5Ctimes%208%2660%20%5Ctimes%2010%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cmathbf%7B240%7D%26%5Cmathbf%7B360%7D%26%5Cmathbf%7B480%7D%5C%5C%5Cmathbf%7B360%7D%26%5Cmathbf%7B480%7D%26%5Cmathbf%7B600%7D%5Cend%7Barray%7D%5Cright%5D)
Therefore;
![60 \cdot A = \left[\begin{array}{ccc}240\4&360&480\\360&480&600\end{array}\right]](https://tex.z-dn.net/?f=60%20%5Ccdot%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D240%5C4%26360%26480%5C%5C360%26480%26600%5Cend%7Barray%7D%5Cright%5D)
Learn more about matrices here:
brainly.com/question/14296012
Coordinates of the midpoint of AC:
M ( (-6-2) / 2) , ( 7-9 ) /2 ) = ( -4, -1 )
d ( BM ) = √ ( 4 + 4 )² + ( -1+ 1 )²
d ( BM ) = √ 8 ² =√ 64 = 8
The length of the median from angle B is 8.
The measure of angles are 69 degree and 111 degree
<em><u>Solution:</u></em>
Given is linear pair angles
The measure of angles are: (6x - 9) degrees and (9x - 6) degrees
A linear pair of angles is formed when two lines intersect.
The measure of a straight angle is 180 degrees, so a linear pair of angles must add up to 180 degrees.
Therefore,
![(6x - 9) + (9x - 6) = 180\\\\\text{Remove the parenthesis and solve}\\\\6x - 9 + 9x - 6 = 180\\\\\text{Combine the like terms}\\\\6x + 9x - 15 = 180\\\\15x - 15 = 180\\\\\text{Move the constants to right side}\\\\15x = 180 + 15\\\\15x = 195\\\\x = 13](https://tex.z-dn.net/?f=%286x%20-%209%29%20%2B%20%289x%20-%206%29%20%3D%20180%5C%5C%5C%5C%5Ctext%7BRemove%20the%20parenthesis%20and%20solve%7D%5C%5C%5C%5C6x%20-%209%20%2B%209x%20-%206%20%3D%20180%5C%5C%5C%5C%5Ctext%7BCombine%20the%20like%20terms%7D%5C%5C%5C%5C6x%20%2B%209x%20-%2015%20%3D%20180%5C%5C%5C%5C15x%20-%2015%20%3D%20180%5C%5C%5C%5C%5Ctext%7BMove%20the%20constants%20to%20right%20side%7D%5C%5C%5C%5C15x%20%3D%20180%20%2B%2015%5C%5C%5C%5C15x%20%3D%20195%5C%5C%5C%5Cx%20%3D%2013)
<em><u>Thus the measure of angles are:</u></em>
![(6x - 9) \text{ degrees } = 6(13) - 9 = 78-9 = 69 \text{ degrees }\\\\(9x - 6) \text{ degrees } = 9(13) - 6 = 117 - 6 = 111 \text{ degrees }](https://tex.z-dn.net/?f=%286x%20-%209%29%20%5Ctext%7B%20degrees%20%7D%20%3D%206%2813%29%20-%209%20%3D%2078-9%20%3D%2069%20%5Ctext%7B%20degrees%20%7D%5C%5C%5C%5C%289x%20-%206%29%20%5Ctext%7B%20degrees%20%7D%20%3D%209%2813%29%20-%206%20%3D%20117%20-%206%20%3D%20111%20%5Ctext%7B%20degrees%20%7D)
Thus measure of angles are 69 degree and 111 degree