The formula for finding a gradient is
y2-y1/x2-x1.
So in your case it will be the following:
Jacob wants to build a rectangular enclosure for his animals. One side of the pen will be against the barn,so he needs no fence on that side.
Let w be the width of the enclosure (perpendicular to the barn) and let l be the length of the enclosure (parallel to the barn).
one side of the length is not counted for perimeter because one side of length will be against the barn.
Perimeter = 400 ft
Perimeter of rectangle = L + W + W
400 = L + 2W
L = 400 - 2W
Area = L * W
Replace L by 400 - 2W
A(W) = (400 - 2W) * W

Now we find out x coordinate of vertex to find the width that maximize the area

a= -2 and b = 400

The width w would maximize the area is w = 100ft
To find maximum area we plug in 100 for W in A(W)


the maximum area is 20,000 square feet
Answer:
p=7
Step-by-step explanation:
2 (5p-4)=3p-7
(10p-8)=3p-7
10p=3p+1
7p=1
p=7
Answer:
(15, 12)
Step-by-step explanation:
Let's generate two systems of equations that fit this scenario.
Number of trips to the airport = x
Number of trips from the airport = y
Total number of trips to and from the airport = 27
Thus:
=> equation 1.
Total price for trips to the Airport = 14*x = 14x
Total price of trips from the airport = 7*y = 7y
Total collected for the day = $294
Thus:
=> equation 2.
Multiply equation 1 by 7, and multiply equation 2 by 1 to make both equations equivalent.
7 × 
1 × 
Thus:
=> equation 3
=> equation 4
Subtract equation 4 from equation 3
-7x = -105
Divide both sides by -7
x = 15
Substitute x = 15 in equation 1


Subtract both sides by 15


The ordered pair would be (15, 12)