Answer:
the answer is .3 or 3/10
Step-by-step explanation:
Answer:
And we can find this probability using the complement rule and with excel or the normal standard table:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the complement rule and with excel or the normal standard table:
Answer:
- 1.33 per pound
- 6.65 for 5 pounds
Step-by-step explanation:
To find cost per pound, divide cost by pounds.
3.99/(3 lb) = 1.33/lb . . . . cost per pound
The cost of 5 pounds will be found by multiplying that by 5:
(1.33/lb)(5 lb) = 6.65 . . . cost of 5 pounds
Answer:
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Step-by-step explanation:
Given;
Confidence interval CI = (a,b) = (0.036, 0.086)
Lower bound a = 0.036
Upper bound b = 0.086
To express in the form;
p-e< p < p+e
Where;
p = mean Proportion
and
e = margin of error
The mean p =( lower bound + higher bound)/2
p = (a+b)/2
Substituting the values;
p = (0.036+0.086)/2
Mean Proportion p = 0.061
The margin of error e = (b-a)/2
Substituting the given values;
e = (0.086-0.036)/2
e = 0.025
Re-writing in the stated form, with p = 0.061 and e = 0.025
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086