Answer:
neither one is greater
Step-by-step explanation:
Because 0.5 as a fraction is 1/2 and 2/4 simplified is also 1/2 so they are equal
You seem to have gotten m∠2. Remember that ∠1 and ∠2 are alternate interior angles, meaning they're both equal. Since they gave you m∠1 as being 26°, you now know the measure of ∠2.
As for m∠3 and m∠4, If you look at ∠3 you'll see that it is complementary to ∠1 (They both add up to 90°), so if you subtract m∠1 from 90° you'll have found m∠3. You find m∠4 the same way.
Hope this helped.
1 in 14 or 1/14
this is the formula I used to calculate:
Probability = Favorable cases / Possible cases
Answer:
El área del círculo que se encuentra en el cuadrado es de 78.5cm²
Step-by-step explanation:
Para resolver este ejercicio tenemos que pensar que un cuadrado tiene sus 4 lados iguales, por lo que todos sus lados medirán 10cm.
Ahora nos fijamos que necesitamos saber para calcular el área de un circulo
a = área
r = radio
π = 3.14
a = π * r²
como podemos ver no sabemos el valor del radio
como el circulo toca con los 4 lados del cuadrado sabemos que su radio sera la distancia del centro del cuadrado a cualquiera de los lados.
Entonces tenemos que dividir un lado por 2
10cm/2 = 5cm
El radio del circulo sera 5cm
Ahora que tenemos todos los datos podemos calcular el valor del área
a = 3.14 * (5cm)²
a = 3.14 * 25cm²
a = 78.5cm²
El área del círculo que se encuentra en el cuadrado es de 78.5cm²
Answer:
Step-by-step explanation:
1 ) Y∝ 1 / X
Y = k / X
Y = 9 , X = -5
Putting the values in the relation above
9 = k / - 5
k = -45
Y = - 45 / X
Put Y = - 6
- 6 = - 45 / X
X = - 45 / -6
= 7.5
2 )
Luke and Nora can peel 12 carrots in 5 minutes
in 1 minute Luke and Nora can peel 12 / 5 carrot
in 1 minute Luke alone can peel 12/ 11 carrot .
In 1 minute Nora alone will peel (12 / 5 - 12/ 11 ) carrot
(12 / 5 - 12 / 11 )
= 2.4 - 1.1
= 1.3 carrot
In 1 minute Nora alone will peel 1.3 carrot
1.3 carrot in 1 minute
8 carrot in 8 / 1.3 minute
= 6.15 minutes.
In 1 minute Nora alone will peel 8 carrot in 6.15 minutes working alone.