Answer:
Complete ionic:
.
Net ionic:
.
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water:
,
, and
. These three salts will exist as ions:
- Each
formula unit will exist as one
ion and one
ion. - Each
formula unit will exist as one
ion and two
ions (note the subscript in the formula
.) - Each
formula unit will exist as one
and two
ions.
On the other hand,
is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite
,
, and
(three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each
formula unit will exist as only one
ion and one
ion. However, because the coefficient of
in the original equation is two,
alone should correspond to two
ions and two
ions.
Do not rewrite the salt
because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of
and two units of
. Doing so will give:
.
Simplify the coefficients:
.
Answer:
CH3OH and NADH
Explanation:
The given chemical reaction is an redox reaction in which reduction and oxidation take place.
In the process of oxidation: electrons are loss while in the process of reduction: electrons are gained.
In the given redox reaction: CH3OH + NAD --> CH2O + NADH
NAD is reduced to NADH as NADH gains one hydrogen electron while CH3OH (methanol) is oxidized to CH2O (methanal) by losing electrons.
So, CH3OH (methanol) and NADH are the reduced forms while NAD and CH2O (methanal) are oxidized forms.
The Geiger Counter. Geiger counters are used to detect radioactive emissions, most commonly beta particles and gamma rays. The counter consists of a tube filled with an inert gas that becomes conductive of electricity when it is impacted by a high-energy particle.
Hope That Helps!!!
NOTE:Mark as BRAINLIEST!!!!!
<u>Answer: </u><em>B. Adding more protons to a positively charged body until the number of protons matches the number of electrons</em>
Option B is the appropriate response
<u>Explanation:</u>
Utilising the equivalent number of inverse charges will kill a charged body.
Adding more protons to a decidedly charged body until the number of protons coordinates the quantity of electrons won't kill the body since protons are emphatically charged particles. Adding more protons to an emphatically charged body would make it all the more decidedly charged.
Enabling free electrons to escape from a contrarily charged body will kill since the more negative body leaves the negative electrons.
Answer: The mass
Explanation: ability to rust, flammability, and ability to combust are chemical properties.