Answer:
Welding and computer chips
The law of conservation of energy has not been broken, provided energy is released from the fission process.
<h3>What is the law of conservation of energy?</h3>
The law states that the total energy of a process is conserved. That is, the total energy or mass of a system before and after undergoing processing remains the same. However, some of the mass/energy can be converted to another form.
When a material undergoes fission, the sum total of the mass of the particles formed should be equal to the mass of the starting materials, provided that all other things remain the same.
However, if energy is released from the fission process, it means that some of the mass of the starting materials has been converted to energy and released to the environment.
More on the law of conservation of energy can be found here: brainly.com/question/20971995
#SPJ1
Answer:
Explanation:
When comparing the drops of oil and water, one thing I noticed was the shape. The water drop was more defined, whereas the drop of oil began to spread and was much flatter. This may be due to the waxy material, and how both oil and water react to the wax.
I'm pretty sure it's called a volcanic winter, look up my answer to be correct though.
Answer:
d. 103.3
Explanation:
In the given question, the National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. And the units of atmospheric pressure used for reporting the atmospheric pressure data are inches of mercury. For a barometric pressure of 30.51 inches of mercury, we can calculate the pressure in kPa as follow:
In principle, 3.386 kPa is equivalent to the atmospheric pressure of 1 inch of mercury. Thus, 30.51 inches of mercury is equivalent to 30.51 in *(3.386 kPa/1 in) = 103.307 kPa.
Therefore, a barometric pressure of 30.51 inches of mercury corresponds to _____103.3_____ kPa.