Answer:
4 grams
Explanation:
A = A₀e^⁻kt
A₀ = 125.0 grams
k= 0.693/t(1/2) = (0.693/68.8) yrs⁻¹ = 0.01 yrs⁻¹
t = 344.0 years
A = 125.0g·[e^-(0.01yrs⁻¹)(344.0yrs)] = 125(0.032)grams = 4.000g (4 sog. figs. based on A₀ = 125.0 grams)
We have that the Complete Expanded Structure of (CH3)2CHCH2OCH2CH3 is given in the attachment below
From the Question
(CH3)2CHCH2OCH2CH3
Generally for the condensed formula (CH3)2CHCH2OCH2CH3
We consider that this is a single bond connecting them
We consider
Hydrogen H(1)
Oxygen(8)
Carbon(6)
In conclusion
The Complete Expanded Structure of (CH3)2CHCH2OCH2CH3 is given in the attachment below.
For more information on this visit
brainly.com/question/24102840
External fertilization in animals usually occurs in water or in damp areas in a process called spawning.
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate