Answer:

Step-by-step explanation:

Factor out 20 from the expression.

Take 20 as common.

 
        
             
        
        
        
![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ h=-16t^2+\stackrel{\stackrel{v_o}{\downarrow }}{65}t](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20h%3D-16t%5E2%2B%5Cstackrel%7B%5Cstackrel%7Bv_o%7D%7B%5Cdownarrow%20%7D%7D%7B65%7Dt)
now, take a look at the picture below, so for 2) and 3) is the vertex of this quadratic equation, 2) is the y-coordinate and 3) the x-coordinate.


 
        
             
        
        
        
Part A: subtract 6 from both sides 
Divide by -3 on both sides 
X=-3
Part B: add like terms (-2K-3k)
Add 12 to both sides 
Add 5k to both sides 
Divide by 5 on both sides 
K=3
Part C: distribute 6 into the parentheses
Add like terms together (36-5) 
Subtract 1 from both sides 
Subtract 36v from both sides 
Divide by -30 on both sides 
-1=v
 
        
             
        
        
        
Answer:
The standard deviation for the mean weigth of Salmon is 2/3 lbs for restaurants, 2/7 lbs for grocery stores and 1/4 lbs for discount order stores.
Step-by-step explanation:
The mean sample of the sum of n random variables is 

If 
 are indentically distributed and independent, like in the situation of the problem, then the variance of 
 will be the sum of the variances, in other words, it will be n times the variance of 
 . 
However if we multiply this mean by 1/n (in other words, divide by n), then we have to divide the variance by 1/n², thus 
 and as a result, the standard deviation of 
 is the standard deviation of 
 divided by 
 .
Since the standard deviation of the weigth of a Salmon is 2 lbs, then the standard deviations for the mean weigth will be:
- Restaurants: We have boxes with 9 salmon each, so it will be 

 - Grocery stores: Each carton has 49 salmon, thus the standard deviation is 

 - Discount outlet stores: Each pallet has 64 salmon, as a result, the standard deviation is 

 
We conclude that de standard deivation of the mean weigth of salmon of the types of shipment given is: 2/3 lbs for restaurants, 2/7 lbs for grocery stores and 1/4 lbs for discount outlet stores.
 
        
             
        
        
        
Answer:
Answer for the question :
Consider the optimization problem where A m × n , m ≥ n , and b m .
a. Show that the objective function for this problem is a quadratic function, and write down the gradient and Hessian of this quadratic.
b. Write down the fixed-step-size gradient algorithm for solving this optimization problem.
c. Suppose that Find the largest range of values for α such that the algorithm in part b converges to the solution of the problem.
is explained din the attachment.
Step-by-step explanation: