This question is solved using an available similar problem as data provided for the forces was not given.
Repeat the same steps outlined for your problem.
Regards.
Answer:
F = 1.598 KN , Q = 90 degree (+ y-axis)
Explanation:
Sum of Forces in x-direction to the left (+)
2 cos (30) + 3cos (60) + F*cos (Q) = F_a ..... 1
Sum of Forces in y-direction to the up (+)
2 sin (30) + F*sin (Q) - 3 sin (60) ...... 2
Using Eq 2 and solve:
F*sin (Q) = 1.598 KN
F_min when sin (Q) is max, max possible value of sin(Q) = 1 @ Q = 90 degrees.
Hence,
F_min = 1.598 KN
Using Eq 1 @ Q = 90 degrees and F = 1.598 KN:
F_a = 2 cos (30) + 3cos (60) = 3.2 KN
Complete Question:
The mass of the sphere is 0.151 kg. What is the rotational inertia of the wheel? Recall that the radius of the sphere is about 0.312 m. Express your answer with three significant figures in Kg.m².
Answer:
I = 5.88*10⁻³ kg.m²
Explanation:
It can be showed that the rotational inertia (or moment of inertia) for a solid sphere of radius r and mass m, regarding any axis passing through the center of the sphere, can be expressed as follows:
I = (2/5)*m*r² (1)
where m= 0.151 kg, and r =0.312 m. (Our givens).
Replacing in (1) we have:
I = (2/5)*0.151 kg*(0.312m)² = 5.88*10⁻³ kg.m²
The unit to express work is called Joule.
Increase because kinetic energy is all about the speed of an object and the more speed the more kinetic energy.
Two dangerous elements can form a compound that is edible known as "NaCl salt".
<u>Explanation:</u>
Sodium and chlorine are two very dangerous elements. As the reaction between sodium and water is extremely violent and chlorine is a very toxic gas. But combination of these elements result into a harmless product with unique properties like it is edible and dissolves without exploding in water.
In sodium chloride reaction the atoms of sodium interact with chlorine atoms. Sodium will donate an electron (by becoming positively charged) to acceptor chlorine (which become negatively charged) as given in following reaction

As sodium and chlorine are very keen to achieve noble gas configuration by completing an octet on donating and accepting an electron respectively.