Answer:
The specific heat capacity can be defined as the amount of heat required to raise the temperature of 1 unit of mass by 1 unit temperature. The specific heat capacity of water is 4.186 joule/gram °C which is higher than common substances. The land has lower specific heat capacity. Thus, the land gets hot quickly than water.
This results in warming up air near the land which creates a difference in pressure across the coastal region. Sea breeze blows from sea towards landmass. Opposite happens at night, when water is still warm and land gets cooled down quickly. Then land breeze blows from landmass towards the sea. This breeze maintains a moderate temperature and windy and humid weather in the coastal regions.
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.
Answer:
Thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Explanation:
From the concept of Escape Velocity, derived from Newton's Law of Gravitation, definition of Work, Work-Energy Theorem and Principle of Energy Conservation, which is the minimum speed such that rocket can overcome gravitational forces exerted by the Earth, and according to the Tsiolkovski's Rocket Equation, which states that thrust done by the rocket is equal to the change in linear momentum of the rocket itself, we conclude that thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Well, you should TAKE COVER UNDER A STUDY DESK, TABLE OR AGAINST AN INSIDE WALL. Which is C. This is because, doing this protects you from the falling objects. If you do A or B, you will probably get crushed by falling objects because you are exposed. Hope I helped.