Using the binomial distribution, it is found that there is a 0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
<h3>What is the binomial distribution formula?</h3>
The formula is:
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
Considering that there are 4 questions, and each has 5 choices, the parameters are given as follows:
n = 4, p = 1/5 = 0.2.
The probability that he answers exactly 1 question correctly in the last 4 questions is P(X = 1), hence:
0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
Answer:
1
Step-by-step explanation:
Any number divided by itself equals 1. So, 23 divided by 23 is 1.
<span>The factors of 60 are 60, 30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1.The factors of 75 are 75, 25, 15, 5, 3, 1.<span>The common factors of 60 and 75 are 15, 5, 3, 1, intersecting the two sets above.</span><span>In the intersection factors of 60 ∩ factors of 75 the greatest element is 15.</span><span>Therefore, the greatest common factor of 60 and 75 is 15.
</span></span>
Answer:
the equation representing total amount of blood donated is .
Step-by-step explanation:
Total number of volunteers = 32
number of volunteers couldn't donate blood = .
So Number of volunteers who donated blood can be calculated by subtracting number of volunteers couldn't donate blood from Total number of volunteers.
Framing in equation form we get;
So, the number of remaining volunteers who donated blood = .
Each of these volunteers donated blood = 470 ml
Now Total Amount of Blood donated is equal to Amount each of these volunteers donated blood times the number of volunteers who donated blood.
Framing in the equation form we get;
total amount of blood donated milliliters =
Hence the equation representing total amount of blood donated is .
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
& is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
= = = 0.4
Part c)
Assume the events are not independent
Given Data
P = 0.4
= = 0.4
= 0.4 x P
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P = 1 - = 1 -
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56