Answer:
[OH-] = 1.0 x 10-10 M
Explanation:
The acidity of a solution can be determined directly from the concentration of the hydrogen ions and indirectly from the concentrations of the hydroxide ions.
Generally, for a neutral solution we have;
[H3O+] = [OH-] = 1.0 x 10-7 M
For an acidic solution;
[H3O+] > 1.0 x 10-7 M
[OH-] < 1.0 x 10-7 M
Comparing the options the correct option is;
[OH-] = 1.0 x 10-10 M
Answer:
"23.896%" is the right answer.
Explanation:
The given values are:
Mass of NaCl,
= 51.56 g
Mass of H₂O,
= 165.6 g
As we know,
⇒ Mass of solution = 
= 
= 
hence,
⇒ 


Answer:
Mass = 1.33 g
Explanation:
Given data:
Mass of argon required = ?
Volume of bulb = 0.745 L
Temperature and pressure = standard
Solution:
We will calculate the number of moles of argon first.
Formula:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
By putting values,
1 atm ×0.745 L = n × 0.0821 atm.L/mol.K× 273.15 K
0.745 atm. L = n × 22.43 atm.L/mol
n = 0.745 atm. L / 22.43 atm.L/mol
n = 0.0332 mol
Mass of argon:
Mass = number of moles × molar mass
Mass = 0.0332 mol × 39.95 g/mol
Mass = 1.33 g
Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
Answer:
Answer:
The mole ratio of C₄H₁₀ and CO₂ is 2 : 8, which simplifies to 1 : 4.
Explanation:
The mole ratio is the relative proportion of the moles of products or reactants that participate in the reaction according to the chemical equation.
The chemical equation given is:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Once you check that the equation is balanced, you can set the mole ratios for all the reactants and products. The coefficients used in front of each reactant and product, in the balanced chemical equation, tells the mole ratios.
In this case, they are: 2 mol C₄H₁₀ : 13 mol O₂ : 8 mol CO₂ : 10 mol H₂O
Since you are asked about the mole ratio of C₄H₁₀ and CO₂ it is:
2 mol C₄H₁₀ : 8 mol CO₂ , which dividing by 2, simplifies to
1 mol C₄H₁₀ : 4 mol CO₂, or
1 : 2.
Explanation: