Answer:
Zero, the support force and gravitational force together equal a zero net force
Explanation:
The work done is calculated by multiplying the Force by the distance. So, 10x20 = 200 joules.
I hope this is the answer you are looking for, if not good luck on finding your answer ;D
Answer:
γ = 0.06563 N / m
9.78% difference
Explanation:
Solution:-
- Surface tension is the ability of any fluid to resist any external force which causes a decreases in surface area of the impact area due to inward compressive forces. These compressive forces occur due to cohesive nature of the fluid molecules.
- Mathematically, surface tension ( γ ) is defined as the force felt per unit length by the fluid.
γ = F / L
Where,
F: Force imparted
L: The length over which force is felt
- We are given the mass ( M ) of ( n = 100 ) water droplets to e 3.78 g. The mass of a single droplet ( m ) can be evaluated as follows:
m = M / n
m = 3.78 / 100
m = 0.0378 g
- The force ( F ) imparted by a single drop of water from the burette can be determined from the force balance on a single droplet. Assuming the distance over which the drop falls is negligible and resistive forces are negligible. Then the only force acting on the droplet is due to gravity:
F = m*g
F = 0.0378*9.81*10^-3
F = 0.000370818 N
- The length over which the force is felt can be magnified into a circular area with diameter equal to that of a single droplet ( d ). The circumferential length ( L ) of the droplet would be as follows:
L = π*d
L = π*( 0.0018 )
L = 0.00565 m
- Then the surface tension would be:
γ = F / L
γ = 0.000370818 / 0.00565
γ = 0.06563 N / m
- The tabulated value of water's surface tension is given as follows:
γa = 0.07275 N/m
- We will determine the percentage difference between the value evaluated and tabulated value as follows:

- The %difference between is within the allowable practical limits of 10%. Hence, the evaluated value ( γ = 0.06563 N / m ) can be accepted with 9.78% error.
Answer:
The magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
Explanation:
Given;
Radius of circular loop, R = 3.00 cm = 0.03 m
Current in the loop, I = 12.0 A
Magnetic field at the center of circular loop is given as;
B = μ₀I / 2R
Where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
R is the radius of the circular loop
I is the current in the loop
Substitute the given values in the above equation and calculate the magnitude of the magnetic field;
B = (4π x 10⁻⁷ x 12)/ 0.03
B = 5.0272 x 10⁻⁴ T
Therefore, the magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.