Answer.A you should wait 60 minutes so a hour
Answer:
W = 311074.5 [J]
Explanation:
In order to solve this problem we must analyze two parts, in the first part by means of Newton's second law we can determine the acceleration of the beam, remembering that the sum of the forces is equal to the product of mass by acceleration.
∑F = m*a
F = forces acting on the beam [N]
m = mass = 425 [kg]
a = acceleration = 1.8 [m/s²]
The forces acting on the beam are the force of the crane up (positive) and the weight of the beam down (negative)
![F_{crane}-(425*9.81)= 425*1.8\\F_{crane}=4713.25 [N]](https://tex.z-dn.net/?f=F_%7Bcrane%7D-%28425%2A9.81%29%3D%20425%2A1.8%5C%5CF_%7Bcrane%7D%3D4713.25%20%5BN%5D)
Now in the second part, we use the definition of work, which is equal to the product of the force applied in the direction of displacement, that is, the product of force by distance.

where:
W = work [J]
F = force = 4713.25 [N]
d = distance = 66 [m]
![W=4713.25*66\\W=311074.5[J]](https://tex.z-dn.net/?f=W%3D4713.25%2A66%5C%5CW%3D311074.5%5BJ%5D)
Answer:
The tendency of undisturbed objects to stay at rest or to keep moving with the same velocity is called inertia. This is why, the first law of motion is also known as the law of inertia.
<em><u>Example</u></em><em><u>.: A ball at rest on the ground continues to be at rest unless someone kicks it or any external force acts on it.</u></em>
Explanation:
I hope this will help you buddy
B. The resistance is directly proportional to length and inversely proportional to cross sectional area