Answer:
The ideal gas law is expressed mathematically by the ideal gas equation as follows;
P·V = n·R·T
Where;
P = The gas pressure
V = The volume of the gas
n = The number of moles of the gas present
R = The universal gas constant
T = The temperature of the gas
A situation where the ideal gas law is exhibited is in the atmosphere just before rainfall
The atmospheric temperature of the area expecting rainfall drops, (when there is appreciable blockage of the Sun's rays by cloud covering) followed by increased wind towards the area, which indicates that the area was in a state of a low pressure, 'P', and or volume, 'V', or a combination of both low pressure and volume P·V
When the entry flow of air into the area is observed to have reduced, the temperature of the air in the area is simultaneously sensed to have risen slightly, therefore, the combination of P·V is seen to be proportional to the temperature, 'T', and the number of moles of air particles, 'n' in the area
Explanation:
Answer:
1.63 × 10²⁴ atoms.
Explanation:
To calculate the number of atoms (N) contained in 2.7moles of carbon, we multiply the number of moles (n) by Avogadro's number (6.02 × 10²³).
That is, N = n × nA
Where;
N = number of atoms
n = number of moles (mol)
nA = Avogadro's numbe
N = 2.7 × 6.02 × 10²³
N = 16.254 × 10²³
N = 1.63 × 10²⁴ atoms.
Hence, there are 1.63 × 10²⁴ atoms in 2.7moles of Carbon.
The answer is (3) An electron in the third shell has more energy than an electron in the second shell. The energy of electron will increase when number of shell increase.
Explanation:
The reaction between calcium hydroxide and nitric acid is as follows.

Number of reactant atoms are as follows.
Number of product atoms are as follows.
To balance the given chemical equation, multiply
by 2 on reactant side and multiply
by 2 on the product side.
Therefore, the balanced chemical equation will be as follows.

Answer:
<h3>A</h3>
Explanation:
<h2>sorry try lang baka mali</h2><h2 />