Answer:
AU(B n C)= (1,3,5,7,9,6)
Step-by-step explanation:
BnC= (6)
AU(Bn C)= (1,3,5,7,9)U(6)
A U(B n C)= (1,3,5,7,9,6)
Answer: cos(Θ) = (√15) / 4
Explanation:
The question states:
1) sin(Θ) = 1/4
2) 0 < Θ < π / 2
3) find cos(Θ)
This is how you solve it.
1) Use the fundamental identity (in this part I use α instead of Θ, just for facility of wirting the symbols, but they mean the same for the case).
![(cos \alpha )^2 + (sin \alpha )^2 =1](https://tex.z-dn.net/?f=%28cos%20%5Calpha%20%29%5E2%20%2B%20%28sin%20%5Calpha%20%29%5E2%20%3D1)
2) From which you can find:
![(cos \alpha )^2 = 1 - (sin \alpha )^2](https://tex.z-dn.net/?f=%28cos%20%5Calpha%20%29%5E2%20%3D%201%20-%20%28sin%20%5Calpha%20%29%5E2)
3) Replace sin(α) with 1/4
=>
![(cos \alpha )^2 = 1 - (1/4)^2 = 1 - 1/16 = 15/16](https://tex.z-dn.net/?f=%28cos%20%5Calpha%20%29%5E2%20%3D%201%20-%20%281%2F4%29%5E2%20%3D%201%20-%201%2F16%20%3D%2015%2F16)
=>
![cos \alpha =+/- \sqrt{15/16} = +/- (\sqrt{15} )/4](https://tex.z-dn.net/?f=cos%20%5Calpha%20%3D%2B%2F-%20%5Csqrt%7B15%2F16%7D%20%3D%20%2B%2F-%20%28%5Csqrt%7B15%7D%20%29%2F4)
4) Given that the angle is in the first quadrant, you know that cosine is positive and the final answer is:
cos(Θ) =
![\sqrt{15} /4](https://tex.z-dn.net/?f=%20%5Csqrt%7B15%7D%20%2F4)
.
And that is the answer.
a. How many floors are between the seventh and fifteenth floors?
In mathematics, the term "center of dilation" refers to a constant point on a surface from which all other points are either enlarged or compressed. The center of dilation and the scale factor comprise the two properties of a dilation.