Answer:
18.0
Step-by-step explanation:
==>Given:
Triangle with sides, 16, 30, and x, and a measure of an angle corresponding to x = 30°
==>Required:
Value of x to the nearest tenth
==>Solution:
Using the Cosine rule: c² = a² + b² - 2abcos(C)
Let c = x,
a = 16
b = 30
C = 30°
Thus,
c² = 16² + 30² - 2*16*30*cos 30°
c² = 256 + 900 - 960 * 0.8660
c² = 1,156 - 831.36
c² = 324.64
c = √324.64
c = 18.017769
x ≈ 18.0 (rounded to nearest tenth)
We have a + b = 180 and a = 12 + b;
Then, 12 + b + b = 180;
12 + 2b = 180;
2b = 168;
b = 84;
a = 12 + 84;
a = 96;
Answer:
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
Step-by-step explanation:
Let A represent snickers, B represent Twix and C represent Reese's Peanut Butter Cups.
Given;
N(A) = 150
N(B) = 204
N(C) = 206
N(A∩B) = 75
N(A∩C) = 100
N(B∩C) = 98
N(A∩B∩C) = 38
N(Total) = 500
How many students like Reese's Peanut Butter Cups or Snickers, but not Twix;
N(AUC∩B')
This can be derived by first finding;
N(AUC) = N(A) + N(C) - N(A∩C)
N(AUC) = 150+206-100 = 256
Also,
N(A∩B U B∩C) = N(A∩B) + N(B∩C) - N(A∩B∩C) = 75 + 98 - 38 = 135
N(AUC∩B') = N(AUC) - N(A∩B U B∩C) = 256-135 = 121
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
See attached venn diagram for clarity.
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is the shaded part
I’m hoping this helps (but hopefully now you can give the brainliest to the person above)
I’m not very familiar with the square roots method but I believe you try and isolate the term that is squared.