For this case we have the following equation:
![\frac{2}{3}x-\frac{1}{3}= 2 (x + 2)\\](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7Dx-%5Cfrac%7B1%7D%7B3%7D%3D%202%20%28x%20%2B%202%29%5C%5C)
If we multiply both sides of the equation by 3 we get:
---> Multiplication Property of Equality
Applying the distributive property we have:
---> Distributive Property
Adding 1 on both sides of equality we have:
![2x-1 + 1 = 6x + 12 + 1\\](https://tex.z-dn.net/?f=2x-1%20%2B%201%20%3D%206x%20%2B%2012%20%2B%201%5C%5C)
---> Addition Property of Equality
Subtracting
on both sides we have:
![-6x + 2x = 6x-6x + 13\\](https://tex.z-dn.net/?f=-6x%20%2B%202x%20%3D%206x-6x%20%2B%2013%5C%5C)
---> Subtraction Property of Equality
Finally, dividing by -4 on both sides we have:
![\frac{-4x}{-4}= \frac{13}{-4}\\](https://tex.z-dn.net/?f=%5Cfrac%7B-4x%7D%7B-4%7D%3D%20%5Cfrac%7B13%7D%7B-4%7D%5C%5C)
---> Division Property of Equality
<h3>Whats your question?</h3>
Let Z be the reading on thermometer. Z follows Standard Normal distribution with mean μ =0 and standard deviation σ=1
The probability that randomly selected thermometer reads greater than 2.07 is
P(z > 2.07) = 1 -P(z < 2.07)
Using z score table to find probability below z=2.07
P(Z < 2.07) = 0.9808
P(z > 2.07) = 1- 0.9808
P(z > 2.07) = 0.0192
The probability that a randomly selected thermometer reads greater than 2.07 is 0.0192
Standard Form : f (x) = a(x - h)2 + k
Where in this equation (H,K) is the vortex of the parabola
<u>and there are four other ways to solving these quadratic</u>
1. Factoring
2. Completing the square
3. Your quadratic formula ( f (x) = a(x - h)2 + k )
4. Graphing
Answer:
8 units
Step-by-step explanation:
We can use the distance formula. Recall the distance formula:
![d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Let (-11,7) be
and
, and (-5,1) be
and ![y_2](https://tex.z-dn.net/?f=y_2)
Plug in the numbers:
![d=\sqrt{(-5-(-11))^2+(1-7)^2](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28-5-%28-11%29%29%5E2%2B%281-7%29%5E2)
![d=\sqrt{6^2+(-6)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B6%5E2%2B%28-6%29%5E2%7D)
![d=\sqrt{36+36}=\sqrt{72}=6\sqrt2\approx8](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B36%2B36%7D%3D%5Csqrt%7B72%7D%3D6%5Csqrt2%5Capprox8)