Two or more lines are parallel when they lie in the same plane and never intersect. The symbol for parallel is <span>||</span>. To mark lines parallel, draw arrows <span>(>)</span> on each parallel line. If there are more than one pair of parallel lines, use two arrows <span>(<span>>></span>)</span> for the second pair. The two lines below would be labeled <span><span><span>AB</span><span>←→</span></span> || <span><span>MN</span><span>←→−</span></span></span> or <span>l || m</span>.
For a line and a point not on the line, there is exactly one line parallel to this line through the point. There are infinitely many lines that pass through A, but only one is parallel to l.
<span>I will assume the more likely selection of $10 per sandal as opposed to $0.05 per sandal.
So with the formulas
c = 1000 + 5x
r = 75x - 0.4x^2
Sandals Cost Revenue Profit or Loss
0 $1,000.00 $0.00 -$1,000.00
1 $1,005.00 $74.60 -$930.40
2 $1,010.00 $148.40 -$861.60
3 $1,015.00 $221.40 -$793.60
4 $1,020.00 $293.60 -$726.40
5 $1,025.00 $365.00 -$660.00
6 $1,030.00 $435.60 -$594.40
7 $1,035.00 $505.40 -$529.60
8 $1,040.00 $574.40 -$465.60
9 $1,045.00 $642.60 -$402.40
10 $1,050.00 $710.00 -$340.00
11 $1,055.00 $776.60 -$278.40
12 $1,060.00 $842.40 -$217.60
13 $1,065.00 $907.40 -$157.60
14 $1,070.00 $971.60 -$98.40
15 $1,075.00 $1,035.00 -$40.00
16 $1,080.00 $1,097.60 $17.60
17 $1,085.00 $1,159.40 $74.40
18 $1,090.00 $1,220.40 $130.40
19 $1,095.00 $1,280.60 $185.60
20 $1,100.00 $1,340.00 $240.00
As you can see 16 sandals and up is profitable.
At what production levels will the company lose money?
a. between 0 and 10 or between 150 and 190 pairs, inclusive
150 and 190
c. between 10 and 20 or between 50 and 100, inclusive
If you add up the profit between 10 and 20 you will get $-484 so 50 and 100
b. between 0 and 15 or between 160 and 200 pairs, inclusive
160 and 200
d. between 15 and 35 or between 75 and 125, inclusive
Neither 15 and 35 or 75 and 125 will lose money.</span>
Answer:
Check below, please
Step-by-step explanation:
Step-by-step explanation:
1.For which values of x is f '(x) zero? (Enter your answers as a comma-separated list.)
When the derivative of a function is equal to zero, then it occurs when we have either a local minimum or a local maximum point. So for our x-coordinates we can say

2. For which values of x is f '(x) positive?
Whenever we have

then function is increasing. Since if we could start tracing tangent lines over that graph, those tangent lines would point up.

3. For which values of x is f '(x) negative?
On the other hand, every time the function is decreasing its derivative would be negative. The opposite case of the previous explanation. So

4.What do these values mean?

5.(b) For which values of x is f ''(x) zero?
In its inflection points, i.e. when the concavity of the curve changes. Since the function was not provided. There's no way to be precise, but roughly
at x=-4 and x=4
In my opinion the answer is <span>m2 – 100 = –99
proof
</span>m2 – 100 =<span>(m – 10)(m + 10)
for eg. m=1, </span>(-9)(11)= <span>–99</span>