Answer:
Max exercises 13 hours a week, and Sasha 7.
Step-by-step explanation:
To find the number of hours each of them exercises during the week, we solve the system of equations.
In the second equation:

Replacing in the first equation:





So Sasha exercises 7 hours per week.
Max:



Max exercises 13 hours a week.
9514 1404 393
Answer:
1.2 t/m³
Step-by-step explanation:
1 tonne is 1 Mg = 10⁶ g
1 m³ is (100 cm)³ = 10⁶ cm³
The conversion is ...
(1.2 g/cm³) · (1 t)/(10⁶ g) · (10⁶ cm³)/(1 m³)
= 1.2(10⁶)/(10⁶) t/m³
= 1.2 t/m³
__
For this conversion, the numerical value does not change. Megagrams per cubic meter is the same ratio as grams per cubic centimeter.
Answer:
To find the circumference is Pi(r)^2 so reverse that to get the beginning statement
Step-by-step explanation:
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so

It’s A because it’s $125 for t months (t is a place holder for how ever many months) and the starting fee is $60