Answer:

Explanation:
It is given that,
The number of lines per unit length, N = 900 slits per cm
Distance between the formed pattern and the grating, l = 2.3 m
n the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.98 mm, 
Let d is the slit width of the grating,



For the first wavelength, the position of maxima is given by :

For the other wavelength, the position of maxima is given by :

So,



or

So, the difference between these wavelengths is 14.3 nm. Hence, this is the required solution.
Answer:
Newton's third law of motion states that for every action, there is equal and opposite reaction.
While space walking, when the astronaut gets detached from the space ship, she floats in space holding a wrench. In order to get back to the spaceship, she should throw the wrench in the opposite direction of the spaceship. This action would cause a reaction on her own body and she would be pushed away from the wrench and towards the spaceship. Thus, she can return back to the spaceship in this way.
Given that in a parallel circuit:
R1 = 12 ohms
R2= 15 ohms
I = 12 A
I2 = 4 A
V=?
R=?
R3 =?
P=?
Since,
V= IR
or,
V2 = I2 * R2
V2= 4* 15
V2 = 60V
Since in a parallel circuit voltage remain same in all component of the circuit and is equal to the source voltage.
Therefore,
V= V1 = V2 = V3 = 60V
Since,
V= IR
R= V/I
R= 60/12
R= 5 ohm
That is total resistance is equal to 5 ohms.
Since for parallel circuit,
1/R= 1/R1 + 1/R2 + 1/R3
1/5= 1/12+ 1/15 + 1/R3
or
1/R3= 1/5- 1/12- 1/15
1/R3= 1/20
or
R3= 20 ohms
Since,
V=IR
I= V/R
I1= V1/ R1
I1= 60/12
I1= 5 A
I3= V3/R3
I3= 60/20
I3= 3A
Since,
P=VI
P= 60*12
P= 720 watt
P1= V1* I1
P1= 60* 5
P1= 300 watt
P2= V2* I2
P2= 60* 4
P2= 240watt
P3= V3*I3
P3= 60*3
P3= 180 watt
Hence we have,
R1= 12 ohms , R2= 15 ohms, R3= 20 ohms, R= 5 ohms
I1= 5A, I2= 4A, I3= 3A, I= 12 A
V1= V2= V3= V= 60V
P1= 300 watt, P2= 240 watt, P3 = 180 watt, P= 720 watt