1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
10

A car with a mass of 1.50x10^3 kg starts from rest and accelerates to a speed of 18.0m/s in 12.0 s. assume that the force of res

istance remains constant 400.0n during this time. what is the average power developed by the car's engine.
Physics
1 answer:
Luden [163]3 years ago
8 0
The first thing you should know for this case is the definition of distance.
 d = v * t
 Where,
 v = speed
 t = time
 We have then:
 d = v * t
 d = 9 * 12 = 108 m
 The kinetic energy is:
 K = ½mv²
 Where,
 m: mass
 v: speed
 K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
 The work due to friction is
 w = F * d
 Where,
 F = Force
 d = distance:
 w = 400 * 108 = 4.32 * 10 ^ 4
 The power will be:
 P = (K + work) / t
 Where,
 t: time
 P = 2.86 * 10 ^ 5/12 = 23.9 kW
 answer:
 the average power developed by the engine is 23.9 kW
You might be interested in
The electric potential 1.34 m from a charge is 580 V. What is the value of the charge? Include the sign, + or -. (The answer is
blagie [28]

Answer: 8.6

Explanation:

5 0
2 years ago
Different types of families and describe each​
Eddi Din [679]

Answer:

there are many types of family but main is 2

Explanation:

1). joint family 2). nucleic family joint family has mother father grandfather grandmother uncle aunty children. and nucliec family has mother father and childrens

7 0
2 years ago
Read 2 more answers
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
Air bags are designed to deploy in 10 ms. Given that the air bags expand 20 cm as they deploy, estimate the acceleration of the
joja [24]

As it is given that the air bag deploy in time

t = 10 ms = 0.010 s

total distance moved by the front face of the bag

d = 20 cm = 0.20 m

Now we will use kinematics to find the acceleration

d = v_i*t + \frac{1}{2}at^2

0.20 = 0 + \frac{1}{2}a*0.010^2

0.20 = 5 * 10^{-5}* a

a = 4000 m/s^2

now as we know that

g = 10 m/s^2

so we have

a = 400g

so the acceleration is 400g for the front surface of balloon

3 0
3 years ago
Which formula can be used to find the magnitude of the resultant vector? R2 = Rx2 + Ry2 R = Rx + Ry R = Rx(cosθ) R = Rx(sinθ)
12345 [234]
R^2 = rx^2 + ry^2 !!!!!!!!!!
5 0
2 years ago
Read 2 more answers
Other questions:
  • The man who discovered that even individual light particles have wave characteristics was:
    9·2 answers
  • In an internal combustion engine, the gas vapor/air mixture enters the cylinder during the _____ stroke. intake compression powe
    6·1 answer
  • Place /our live /music / important / has / in / an​
    9·1 answer
  • A battery has a terminal voltage of 12.0 V when no current flows. Its internal resistance is 2.0 Ω. If a 7.2 Ω resistor is conne
    9·1 answer
  • A car traveling at point k the car travels south for 8.0 km it then travels west for 5.0 km next it travels for 4,0 what is the
    14·1 answer
  • "Nuclear stability is based on (choose
    5·1 answer
  • Water is moving at a velocity of 2.00 m/s through a hose with an Internal diameter of 1.60 cm. What is the volume flow rate at t
    6·1 answer
  • What is the gravity of sombrero galaxy compared to earth?
    5·2 answers
  • PLSSSSSSSS SOMEONE HELP ME WITH THIS ONE!!
    14·1 answer
  • Who has greater displacement, an astronaut who has just completed an orbit of the earth or you when you have just traveled from
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!