Answer: So finally, the dimensional formula of the radius of gyration will be written as: [M0LT0]. The power of zero on the dimension of the mass and time shows that the mass and the time dimensions are zero for the radius of gyration. Hope this helps (:
S ?
U 0m/s
V ?
A 0.1m/s^2
T 2min (120 sec)
S=ut+0.5at^2
S=0(120 sec)+0.5(0.1m/s^2)(120 sec)^2
S=720m
Distance double 720m*2=1440m
V^2=u^2+2as
V^2=(0)^2+2(0.1 m/s^2)(1440m)
V^2=288
V= square root of 288=12 root 2=16.97 to 2 decimal places
Answer:
Object should be placed at a distance, u = 7.8 cm
Given:
focal length of convex lens, F = 16.5 cm
magnification, m = 1.90
Solution:
Magnification of lens, m = -
where
u = object distance
v = image distance
Now,
1.90 = 
v = - 1.90u
To calculate the object distance, u by lens maker formula given by:
u = 7.8 cm
Object should be placed at a distance of 7.8 cm on the axis of the lens to get virtual and enlarged image.
Answer:
Shadows are made by blocking light. Light rays travel from a source in straight lines. If an opaque (solid) object gets in the way, it stops light rays from traveling through it. The size and shape of a shadow depend on the position and size of the light source compared to the object.
Explanation:
First you do the first parenthesis, (1.08 x 10 - 3) and you do it in the order of operations! (parenthesis, exponents, multiplication/division, add/subtract) to get 7.8. Then you take the second parenthesis (9.3 x 10 - 4) and do the same thing to get 89! You then times 7.8 by 89 to get 694.2! If it needs more elaboration just ask ^.^