Slope point form:
We need the slope "m" and a point (x₀,y₀)
y-y₀=m(x-x₀)
1)
we calculate the slope "m".
Given two points:
(x₁,y₁)
(x₂,y₂)
the slope "m" is:
m=(y₂-y₁) / (x₂-x₁)
In this case:
(4,10)
(6,11)
m=(11-10) / (6-4)=1/2
Now, we calculate the solpe point form.
(4,10)
m=1/2
y-y₀=m(x-x₀)
y-10=(1/2)(x-4)
we make the standard form
y-10=x/2 - 2
Lowest common multiple=2
2y-20=x-4
-x+2y=-4+20
-x+2y=16
Answer: -x+2y=16
Answer:
Step-by-step explanation:
Find the perimeter of an isosceles triangle whose equal sides have a size of 10 m each and the angle between them equal to 30°. We need to know all sides in order to find the perimeter of this triangle. Let x be the base of this isosceles triangle.
Answer:
a) true
Step-by-step explanation:
The bottom-line numbers from synthetic division <em>alternate signs</em>, indicating that -2 is a lower bound. The given statement is true.
__
If the signs were all positive, it would indicate the proposed zero is an <em>upper bound</em>.
__
A graph shows all real zeros are greater than -2.
The system of inequalities are
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) 14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
3) 8 hours babysitting, 7 hours dishwashing
Step-by-step explanation:
The given parameters are;
The amount per hour Janine makes from babysits = $14.50
The amount per hour Janine makes from dishwashing = $9.50
The minimum number of hours Janine can spend dishwashing = 7 hours
The maximum number of hours Janine can spend dishwashing = 10 hours
The maximum number of hours Janine can work each week = 7 hours
The minimum amount she wants to make each week = $140
Let x represent the number of hours Janine spends babysitting and let y represent the number of hours Janine spends dishwashing
1) From the question, we have;
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) Where
14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
Making, y, the subject of the formula of the above inequalities and plotting as functions is given as follows;
y ≥ 140/9.5 - (14.5/9.5)·x
y ≤ 15 - x
3) In order to earn as much money as possible given that the amount Janine earns from babysitting is more than the amount she earns from dishwashing, Janine should spend the least amount of time dishwashing, which is 7 hours, as given, and then spend the remaining 8 hours babysitting to receive $14.5 × 8 + $9.5×7 = $182.5
Answer:
180...
Step-by-step explanation:
15 x 12 = 180