Answer:
Heat, energy that is transferred from one body to another as the result of a difference in temperature.
Explanation:
Answer:
5.0 moles of water per one mole of anhydrate
Explanation:
To solve this question we must find the moles of the anhydrate. The difference in mass between the dry and the anhydrate gives the mass of water. Thus, we can find the moles of water and the moles of water per mole of anhydrate:
<em>Moles Anhydrate:</em>
7.58g * (1mol / 84.32g) = 0.0899 moles XCO3
<em>Moles water:</em>
15.67g - 7.58g = 8.09g * (1mol / 18.01g) = 0.449 moles H2O
Moles of water per mole of anhydrate:
0.449 moles H2O / 0.0899 moles XCO3 =
5.0 moles of water per one mole of anhydrate
Answer:
(a) Hypoeutectic
(b) Alpha solid, aluminium
(c) 70% α
, 30% β
(d) 97.6% α, 2.4% β
(e) 97.6% α, 2.4% β
(f) 97% α, 3% β
Explanation:
(a) The eutectic composition for Al Si alloy is 11.7 wt% silicon, therefore, an Al-4% Si alloy is hypoeutectic
(b) For the hypoeutectic alloy, aluminium, Al, is expected to form first, such that the aluminium content is reduced till the point it gets to the eutectic proportion of 11.7 wt% silicon
(c) At 578°C we have
% α: Al (11 - 4)/(11 - 1) = 70% α
% L: Si 100 - 70 = 30% β
(d) At 576°C we have
α: 99.83% Si (99.83 - 4)/(99.83- 1.65) = 97.6% α
β: 1.65% Si (4 - 1.65)/(99.83- 1.65) = 2.4% β
(e) Primary α: 1.65% α (99.83 - 4)/(99.83 - 1.65) = 97.6% α
Eutectic 4% Si = 100 - 97.6 = 2.4% β
(f) At 25°C we have;
α%: (99.83 - 4)/(99.83 - 1) = 97% α
β%: 100 - 97 = 3% β.
Hi there,
NH3 has the weight of 17.03 grams, and SF6 has the weight of 146.06 grams
so in total, there is 163.09 grams
Hope this helps :P
6.11% w/v of Cu2+ implies that 6.11 g of Cu2+ is present in 100 ml of the solution
therefore, 250 ml of the solution would have: 250 ml * 6.11 g/100 ml = 15.275 g
# moles of Cu2+ = 15.275 g/63.546 g mole-1 = 0.2404 moles
1 mole of CuCl2 contain 1 mole of Cu2+ ion
Hence, 0.2404 moles of Cu2+ would correspond to 0.2404 moles of CuCl2
Molar mass of CuCl2 = 134.452 g/mole
The mass of CuCl2 required = 0.2404 moles * 134.452 g/mole = 32.32 grams