1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
10

What is the coefficients in the following expression

Mathematics
2 answers:
Nikolay [14]3 years ago
6 0

Answer:

5

Step-by-step explanation:

MAXImum [283]3 years ago
4 0

Answer:

5

Step-by-step explanation:

You might be interested in
HELP PLEASE
frozen [14]

Answer:

it would take seven and a half hours

Step-by-step explanation:

450 ÷60 =7.5

8 0
3 years ago
Find the length of the arc and express your answer as a fraction times pie
Elina [12.6K]

Solution:

Given a circle of center, A with radius, r (AB) = 6 units

Where, the area, A, of the shaded sector, ABC, is 9π

To find the length of the arc, firstly we will find the measure of the angle subtended by the sector.

To find the area, A, of a sector, the formula is

\begin{gathered} A=\frac{\theta}{360\degree}\times\pi r^2 \\ Where\text{ r}=AB=6\text{ units} \\ A=9\pi\text{ square units} \end{gathered}

Substitute the values of the variables into the formula above to find the angle, θ, subtended by the sector.

\begin{gathered} 9\pi=\frac{\theta}{360\degree}\times\pi\times6^2 \\ Crossmultiply \\ 9\pi\times360=36\pi\times\theta \\ 3240\pi=36\pi\theta \\ Divide\text{ both sides by 36}\pi \\ \frac{3240\pi}{36\pi}=\frac{36\pi\theta}{36\pi} \\ 90\degree=\theta \\ \theta=90\degree \end{gathered}

To find the length of the arc, s, the formula is

\begin{gathered} s=\frac{\theta}{360\degree}\times2\pi r \\ Where \\ \theta=90\degree \\ r=6\text{ units} \end{gathered}

Substitute the variables into the formula to find the length of an arc, s above

\begin{gathered} s=\frac{\theta}{360}\times2\pi r \\ s=\frac{90\degree}{360\degree}\times2\times\pi\times6 \\ s=\frac{12\pi}{4}=3\pi\text{ units} \\ s=3\pi\text{ units} \end{gathered}

Hence, the length of the arc, s, is 3π units.

4 0
1 year ago
(1/2)^2 - 6 (2 - 2/3)<br><br> Note: 1/2 and 2/3 is a fraction
shusha [124]
\bf \left( \cfrac{1}{2} \right)^2-6\left(2-\cfrac{2}{3}  \right)\impliedby recall~~\mathbb{PEMDAS}&#10;\\\\\\&#10;\cfrac{1^2}{2^2}-6\left( \cfrac{6-2}{3} \right)\implies \cfrac{1}{4}-6\left(  \cfrac{4}{3}\right)\implies \cfrac{1}{4}-\cfrac{6\cdot 4}{3}\implies \cfrac{1}{4}-\cfrac{24}{3}&#10;\\\\\\&#10;\cfrac{1}{4}-8\impliedby LCD~~4\implies \cfrac{1-32}{4}\implies \cfrac{-31}{4}\implies -7\frac{3}{4}
5 0
3 years ago
How does the graph of f(x)=3lx+2l+4 relate to its parent function?
Sergeeva-Olga [200]
\bf \qquad \qquad \qquad \qquad \textit{function transformations}&#10;\\ \quad \\\\&#10;&#10;\begin{array}{rllll} &#10;% left side templates&#10;f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}&#10;\end{array}

\bf \begin{array}{llll}&#10;% right side info&#10;\bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\&#10;\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}&#10;\\\\&#10;\bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\&#10;\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\&#10;\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\&#10;\end{array}

\bf \begin{array}{llll}&#10;&#10;&#10;\bullet \textit{ vertical shift by }{{  D}}\\&#10;\qquad if\ {{  D}}\textit{ is negative, downwards}\\\\&#10;\qquad if\ {{  D}}\textit{ is positive, upwards}\\\\&#10;\bullet \textit{ period of }\frac{2\pi }{{{  B}}}&#10;\end{array}

now, with that template above in mind, let's see this one

\bf parent\implies f(x)=|x|&#10;\\\\\\&#10;\begin{array}{lllcclll}&#10;f(x)=&3|&1x&+2|&+4\\&#10;&\uparrow &\uparrow &\uparrow &\uparrow \\&#10;&A&B&C&D&#10;\end{array}


A=3, B=1,  shrunk by AB or 3 units, about 1/3
C=2,          horizontal shift by C/B or 2/1 or just 2, to the left
D=4,          vertical shift upwards of 4 units

check the picture below

7 0
3 years ago
Select a counter-example that makes the conclusion false.
Softa [21]
A counter-example could be

There are more than 3 marbles in the bag, and the other ones are red.

Hope this helps!
4 0
3 years ago
Other questions:
  • The first quartile of a data set is 23, the median is 30, the third quartile is 33, and an outlier is 6. Which of these data val
    13·1 answer
  • (Branliest!) Edith uses the greatest common factor and the distributive property to rewrite this sum: 32 + 24 Which expression d
    7·2 answers
  • HEEEEEEEEEEEEEEEEEEEEEEEEELLLLLLLLLLLLLLLLLLLLLLLPPPPPPPPPPPPPPP
    5·2 answers
  • Plzzz help me do this :-)​
    10·1 answer
  • Having serious block because of the units The density of mercury is 13.6 g/cm3. What approximate mass of mercury is required to
    15·1 answer
  • Cylinder math, help me
    6·1 answer
  • What percent of 54 is 28?<br> 52%<br> 192%<br> 19%<br> 0.52%<br> ?
    13·2 answers
  • What is the area of this composite figure?
    13·1 answer
  • What is the coefficient of x2 in this trinomial?
    14·1 answer
  • The set of ordered pairs below represents the number of tickets sold for a fundraiser. The​ x-coordinates represent the day and
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!