Electric potential energy is defined as Ep=Q*V where Q is the magnitude of the charge and V is the potential difference. So when a charge moves between the points that have a potential difference, it's energy changes.
In our case:
Q=2e=2*(-1.6*10^-19) C
V=75 V
Ep=(-3.2*10^-19)*75
Ep=-2.4*10^-17 J
The change in potential energy of the charge is -2.4*10^-17 J
This would be a cryogenic intermodal tank. These are used to store and transport HAZMAT gases that require storage under specific pressure and temperature parameters. Cryogenic Intermodal tanks have pressure of 25 Psi or less.
Answer:
V=14.9 m/s
Explanation:
In order to solve this problem, we are going to use the formulas of parabolic motion.
The velocity X-component of the ball is given by:

The motion on the X axis is a constant velocity motion so:

The whole trajectory of the ball takes 1.48 seconds
We know that:

Knowing the X and Y components of the velocity, we can calculate its magnitude by:

The correct answer would be left
Answer:
The vertical velocity of the skater upon landing is 10.788 meters per second.
Explanation:
Skateboarder experiments a parabolic movement. As skateboarder jumps horizontally off the top of the staircase, it means that vertical component of initial velocity is zero and accelerates by gravity, the final vertical speed is calculated by the following expression:

Where:
- Initial vertical speed, measured in meters per second.
- Final vertical speed, measured in meters per second.
- Gravitational acceleration, measured in meters per square second.
- Time, measured in seconds.
Given that
,
and
, the final velocity of the skater upon landing is:


The vertical velocity of the skater upon landing is 10.788 meters per second.