Because the temperature of the place its contained in is constantly changing, for example, if you put a room temperature item in the fridge it will become cold, or whatever the temperature you set your fridge to.
Answer:
The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is defined by standard as 9.80665 m/s2 (about 32.17405 ft/s2).
Explanation:
The two units for measuring the diameter of nucleus atom are femtometre and metre.
How do you measure the size of the nucleus ?
Nucleus size is expressed in fermi, often known as femtometers. between a lighter and a heavier nucleus. Despite its modest size, the nucleus contains the majority of an atom's mass. The weight or mass of the atom's nucleus and neutrons are determined by neutrons.
femtometre (fm), which equals
metre.
A nucleus' diameter largely depends as to how many particles it contains, from about 4 fm for a light nucleus like carbon to 15 fm for a heavy nucleus as lead.
Learn more about nucleus of an atom here :-
brainly.com/question/10658589
#SPJ1
Answer:
There is a dependency relationship between the refractive index of each substance and the radiation wavelength.
The refractive index in a given medium is inversely proportional to the wavelength of a color.
For example:
The rays of the red color have a wavelength greater than the rays of the blue color, therefore they have a lower refractive index and consequently a light scattering less than the blue.
Snell's law :
n₂/n₁ = v₁/v₂ = λ₁ /λ₂
*n: (refractive index)
v: (speed of light propagation)
λ: (wavelength)
To solve this problem it is necessary to apply the concepts related to wavelength as a function of frequency and speed, as well as to determine the wavelength as a function of length.
From the harmonic vibration generated we know that the total length of the string will be equivalent to a half of the wavelength, that is

Where,
Wavelength
Therefore the wavelength for us would be,

From the relationship of speed, frequency and wavelength we know that



Therefore the speed of the wave is 232.75m/s